Skip to main content
Log in

Phosphorus-leaching from litterfall in wetland catchments of the Swan Coastal Plain, southwestern Australia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many wetlands of the Swan Coastal Plain in southwestern Australia have catchments with significant areas of native vegetation. The dynamics of P release from their litter and its significance as a P source for wetlands have not been previously investigated. Litterfall of common plant species were collected before the local rainy season, and examined for P leaching properties under inundated conditions. Inundation of `intact' litter materials for 24 hours leached 30±7.5% (95% confidence level) of this Tot-P in litter, measured by anion exchange membrane extraction. This increased to 46.9% of `apparent' P release at 115 days. The released P was incorporated into microbial biomass during leaching so modifying leachate concentrations. Using liquid chloroform `fumigation' it was estimated that 36.2 ± 15.6% (95% confidence level) of Tot-P leached during the 115-day inundation was in the microbial biomass pool, not directly measured by AEM extraction. P leaching during initial and prolonged inundation correlated with litter Ca, Mg and total base concentration, but the initial Tot-P concentration of litter was the best predictor for P leaching, in both short-term and prolonged inundation (R 2 = 0.80 and 0.93, p < 0.0001). The high P leaching rate during 24 hours suggested that P from litter during `first storm' events could produce a significant P flux from local catchments and contribute nutrients to downstream wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, M. M. & W. M. Jarrel, 1992. Bioavailability index for phosphorus using ion exchange resin-impregnated membranes. Soil Sci. Soc. Am. J. 56: 1532–1537.

    Google Scholar 

  • Aerts, R., 1997. Climate, leaf litter chemistry and leaf decomposition in terrestrial ecosystems: a triangle relationship. Oikos 79: 439–449.

    Google Scholar 

  • Aerts, R. & H. Decaluwe, 1997. Nutritional and plant-mediated controls on leaf litter decomposition of carex species. Ecology 78: 244–260.

    Google Scholar 

  • Aerts, R., J. T. A. Verhoeven & D. F. Whigham, 1999. Plantmediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170–2181.

    Google Scholar 

  • Bentley, D., P. F. Grierson, L. T. Bennet & M. A. Adams, 1999. Evaluation of anion exchange membranes to estimate bioavailable phosphorus in native grasslands of semi-arid northwestern Australia. Commun. Soil Sci. Plant Anal. 30: 2231–2244.

    Google Scholar 

  • Brake, M., H. Hoper & R. G. Joergensen, 1999. Land use-induced changes in activity and biomass of micro-organisms in raised bog peats at different depths. Soil Biol. Biochem. 31: 1489–1497.

    Google Scholar 

  • Brookes, P. C., D. S. Powlson & D. S. Jenkinson, 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14: 319–329.

    Google Scholar 

  • Bryant, D. M., E. A. Holland, T. R. Seastedt & M. D. Walker, 1998. Analysis of litter decomposition in an alpine tundra. Can. J. Bot. 76: 1295–1304.

    Google Scholar 

  • Clarke, P. J. & W. G. Allaway, 1996. Litterfall in Casuarina glauca coastal wetland forests. Aust. J. Bot. 44: 373–380.

    Google Scholar 

  • Cooperband, L. R., P. M. Gale & N. B. Comerford, 1999. Re-finement of the anion exchange membrane method for soluble phosphorus measurement. Soil Sci. Soc. am. J. 63: 58–64.

    Google Scholar 

  • Cornelissen, J. H. C. & K. Thompson, 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135: 109–114.

    Google Scholar 

  • Cortez, J., J. M. Demard, P. Bottner & L. J. Monrozier, 1996. Decomposition of Mediterranean leaf litters – a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol. Biochem. 28: 443–452.

    Google Scholar 

  • Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Grown, L. G. Schmidt & F. Cheal, 1993. Wetlands of the Swan Coastal Plain. Volume 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia: 242 pp.

  • Eisenbeis, G., R. Lenz & T. Heiber, 1999. Organic residue decomposition: the minicontainer-system – A multifunctional tool in decomposition studies. Envir. Sci. Pollut. Res. 6: 220–224.

    Google Scholar 

  • Furtado, J. I. & S. Verghese, 1981. Nutrient turnover in a freshwater inundated forested swamp, the Rasel Bera, Malaysia. Verh. Int. Ver. Theor. Angew. Limnol. 21: 1200–1206.

    Google Scholar 

  • Gallardo, A. & J. Merino, 1999. Control of leaf litter decomposition rate in aMediterranean shrubland as indicated by N, P and lignin concentrations. Pedobiologia 43: 64–72.

    Google Scholar 

  • Grigg, A. H. & D. R. Mulligan, 1999. Litterfall from two eucalypt woodlands in central Queensland. Aust. J. Ecol. 24: 662–664.

    Google Scholar 

  • Hedley, M. J. & J. W. B. Stewart, 1982. Method to measure microbial phosphate in soils. Soil Biol. Biochem. 14: 377–385.

    Google Scholar 

  • Herbohn, J. L. & R. A. Congdon, 1998. Ecosystem dynamics at disturbed and undisturbed sites in north Queensland wet tropical rain forest – III – nutrient returns to the forest floor through litterfall. J. Trop. Ecol. 14: 217–229.

    Google Scholar 

  • Jenkinson, D.S. & J. N. Ladd, 1981. Microbial biomass in soil: measurement and turnover. In Paul, E. A. & J. N. Ladd (eds), Soil Biochemistry. Marcel Dekker, New York: Vol 5, pp 415–471.

    Google Scholar 

  • Kouno, K., Y. Tuchiya & T. Ando, 1995. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 27: 1353–1357.

    Google Scholar 

  • Kuehn, K. A., M. J. Lemke, K. Suberkropp & R. C. Wetzel, 2000. Microbial biomass and production associated with de105 caying leaf litter or the emergent macrophyte Juncus effuses. Limnol. Oceanogr. 45: 862–870.

    Google Scholar 

  • Lindsay W. L. & P. L. G. Vlek, 1989. Phosphate minerals. In Dixon, J. B. & S. B. Weed (eds), Minerals in Soil Environments. Second Edition. Soil Science Society of America, Wisconsin: 1102–1130.

    Google Scholar 

  • McArthur, W.M., 1991. Reference soils of south-western Australia. Department of Agriculture, Western Australia. Perth: Australia: 265 pp.

    Google Scholar 

  • McComb, A. J. & R. J. Lukatelich, 1995. The Peel/Harvey Estuarine System, Western Australia. In McComb, A. J. (ed.), Eutrophic Shallow Estuaries and Lagoons. CRC Press, U.S.A.: pp 5–18.

    Google Scholar 

  • McLaughlin, M. J., A. M. Alston & J. K. Martin, 1986. Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soils. Soil Biol. Biochem. 18: 437–443.

    Google Scholar 

  • Meyer, J. L., J. B. Wallace & S. L. Eggerty, 1998. Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1: 240–249.

    Google Scholar 

  • Molinero, J., J. Pozo & E. Gonzalez, 1996. Litter breakdown in streams of the Aguera catchment-influence of dissolved nutrients and land use. Freshwat. Biol. 36: 745–756.

    Google Scholar 

  • Myers, R. G., S. J. Thien & G. M. Pierzynsky, 1999. Using an ion sink to extract microbial phosphorus from soil. Soil Sci. Soc. am. J. 62: 1229–1237.

    Google Scholar 

  • Nuernberg, N. J., J. E. Leal & M. E. Sumner, 1998. Evaluation of an anion-exchange membrane for extracting plant available phosphorus in soils. Commun. Soil Sci. Plant Anal. 29: 467–479.

    Google Scholar 

  • O'Connell, A. M. & P. M. A. Menage, 1982. Litterfall and nutrient cycling in karri (Eucalyptus diversicolor F. Muell.) forest in relation to stand age. Aust. J. Ecol. 7: 49–62.

    Google Scholar 

  • Ofori-Frimpong, K. & D. L. Rowell, 1999. The decomposition of cocoa leaves and their effect on phosphorus dynamics in tropical soil. Eur. J. Soil Sci. 50: 165–172.

    Google Scholar 

  • Oh, Young-Ae, Choi, Kyoung-Ho & Kim, Soon-Dong, 1998. Changes in enzyme activities and population of lactic acid bacteria during the kimchi fermentation supplemented with water extract of pine needle. Han'guk Sikp'um Yongyang Kwahak Hoechi, 27: 244–251. (From Chemical Abstracts, 1998, 129, Abstract No. 160810).

    Google Scholar 

  • Parsons, W. F. J., B. R. Yaylor & D. Parkinson, 1990. Decomposition of aspen (Populus tremuloides) leaf litter modified by leaching. Can. J. Forr. Res. 20: 943–951.

    Google Scholar 

  • Plunin, N. V. C., 1982. Processes contributing to decay of reed (Phragmites australis) litter in fresh water. Arch. Hydrobiol. 94: 182–209.

    Google Scholar 

  • Qiu, S. & A. J. McComb, 1995. The planktonic and microbial contributions to phosphorus release from fresh and air-dried sediments. Aust. J. mar. Freshwat. Res. 46: 1039–1045.

    Google Scholar 

  • Qiu, S. & A. J. Mccomb, 2000. Properties of sediment phosphorus in seven wetlands of the Swan Coastal Plain, south-western Australia. Wetlands 20: 267–279.

    Google Scholar 

  • Raich, J. W. & W. H. Schlesinger, 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81–99.

    Google Scholar 

  • Rayment, G. E. & F. R. Higginson, 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkata Press: Melbourne.

    Google Scholar 

  • Reddy, K. R., R. H. Kadlec, E. Flaig & P. M. Gale, 1999. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Envir. Sci. Technol. 29: 83–146.

    Google Scholar 

  • Rubb, K. A., Z. H. Xu, J. A. Simpson & P. G. Saffigna, 1998. Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southwest Queensland, Australia. Forr. Ecol. Manag. 110: 343–352.

    Google Scholar 

  • Saggar, S., M. J. Hedley, R. E. White, K. W. Perrott, P. E. H. Gregg, I. S. Cornforth & A. G. Sinclair, 1999. Development and evaluation of an improved soil test for phosphorus, 3. Field comparison of Olsen, Cowell and Resin soil P tests for New Zealand pasture. Nutrient Cycling in Agroecosystems 55: 35–50.

    Google Scholar 

  • Tan, K. H., 1993. Principles of Soil Chemistry. 2nd edn. Marcel Dekker, Inc. New York: USA.

    Google Scholar 

  • Taylor, B. R. & D. Parkinson, 1998. Annual differences in quality of leaf litter of aspen (Populus tremuloides Michx.) affecting rates of decomposition. Can. J. Bot. 66:1940–1947.

    Google Scholar 

  • Wardle, D. A., G. M. Barker, K. I. Bonner & K. S. Nicholson, 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems. J. Ecol. 86: 405–420.

    Google Scholar 

  • Watt K. M. & S. W. Golladay, 1999. Organic matter dynamics in seasonally inundated, forested wetlands of the Gulf Coastal Plain. Wetlands 19: 139–148.

    Google Scholar 

  • Xiong, S. J. & C. Nilsson, 1997. Dynamics of leaf litter accumulation and its effects on riparian vegetation – a review. Bot. Rev. 63: 240–264.

    Google Scholar 

  • Zarcinas, B. A., B. Cartwright & L. R. Spouncer, 1987. Nitric acid digestion and multi-element analysis of plant material by induced coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 18: 131–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, S., McComb, A. & Bell, R. Phosphorus-leaching from litterfall in wetland catchments of the Swan Coastal Plain, southwestern Australia. Hydrobiologia 472, 95–105 (2002). https://doi.org/10.1023/A:1016369101072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016369101072

Navigation