Skip to main content
Log in

Potential Mouse Tumor Model for Pre-Clinical Testing of Mage-Specific Breast Cancer Vaccines

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Currently, there is a lack of suitable pre-clinical mouse models for testing and optimization of experimental cancer vaccines. Here, in situ developed mammary tumors of MMTV-v-Ha-ras and MMTV-c-myc transgenic mice and normal mammary, liver, spleen, and testis were screened for expression of tumor-associated antigens (TAA) Mage-b1/2/3 by reverse-transcriptase polymerase chain reaction (RT-PCR) and Southern blot hybridization. Mage-b1/2/3 are homologues of the human TAA MAGE-B1/2/3. Expression of these human MAGE genes has been found in tumors of various histological types, including breast cancer [39]. Mage-specific RT-PCR products (using primers that amplify all three Mage-b1/2/3) were detected in mammary tumors of the MMTV-v-Ha-ras and MMTV-c-myc transgenic mice and in testis, but not in other normal tissues. RT-PCR products obtained from the mammary tumors (using primers that amplify the complete protein-encoding region of Mage-b1/2/3) were cloned and sequenced, and appeared to be most homologous with Mage-b3. Comparison of the Mage-b3 gene in mammary tumors and normal tissues suggest that somatic mutations did not occur in the Mage-b3 gene of the ras- and myc-induced mammary tumors. In addition, no differences were found between the Mage-b3 cDNA of testis, the only normal tissue that expresses Mage-b3, and Mage-b3 in genomic DNA of normal kidney, where Mage-b3 is silent. The MMTV-v-Ha-ras and MMTV-c-myc transgenic mice of this study are the first immune competent mouse models with in situ developed mammary tumors in which the expression of Mage-b3 TAA has been demonstrated. This makes them potentially suitable as a mouse model for pre-clinical testing of Mage-specific cancer vaccines in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Smet C, Lurquin C, Van der Bruggen P, De Plaen E, Brasseur F, Boon T: Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39: 121–129, 1994

    Google Scholar 

  2. Gaugler B, Van den Eynde B, Van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, Lethe B, Brasseur F, Boon T: Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179: 921–930, 1994

    Google Scholar 

  3. Gillespie AM, Rodgers S, Wilson AP, Ti J, Rees RC, Coleman RE, Murray AK: MAGE, BAGE and GAGE: tumour antigen expression in benign and malignant ovarian tissue. Br J Cancer 78: 816–821, 1998

    Google Scholar 

  4. Lethe B, Lucas S, Michaux L, De Smet C, Godelaine D, Serrano A, De Plaen E, Boon T: LAGE-1, a new gene with tumor specificity. Int J Cancer 10: 903–908, 1998

    Google Scholar 

  5. Thompson JA: Molecular cloning and expression of the car-cinoembryonic antigen gene family members. Tumour Biol 16: 10–16, 1995

    Google Scholar 

  6. Disis ML, Cheever MA: Oncogenic proteins as tumor antigensCurr Opin Immunol 8: 637–642, 1996

    Google Scholar 

  7. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D: Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265: 15286–15293, 1990

    Google Scholar 

  8. Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M, Boon T: A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92: 7976–7980, 1995

    Google Scholar 

  9. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanomaScience 269: 1281–1284, 1995

    Google Scholar 

  10. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA: A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183: 1185–1192, 1996

    Google Scholar 

  11. Gravekamp C, Bontenbal M, Ronteltap CP, Van Duyvenbode D, Bolhuis RHL: In vitro and in vivo activation of CD4+ lymphocytes by autologous tumor cells. Int J Cancer 46: 151–152, 1990

    Google Scholar 

  12. Schreiber H: Tumor immunology. In: William E Paul (ed) Fundamental Immunology. 4th edn, Lippincott-Raven Publishers, Philadelphia, 1998, pp 1237–1270

    Google Scholar 

  13. Weiner DB, Kenne RC: Genetic vaccines. Sci Am 281: 50–57, 1999

    Google Scholar 

  14. Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T: Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80: 219–230, 1999

    Google Scholar 

  15. Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S, Marincola F: Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126: 112–120, 1999

    Google Scholar 

  16. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Sznol M, Schwarz SL, Spiess PJ, Wunderlich JR, Seipp CA, Einhorn JH, Rogers-Freezer L, White DE: Impact of cytokine administration on the generation of antitumor reactivity in patients with meta-static melanoma receiving a peptide vaccine. J Immunol 163: 1690–1695, 1999

    Google Scholar 

  17. Chen Q, Jackson H, Cebon J, Gibb P, Davis ID, Trapani JA: A direct comparison of cytolytic T-lymphocyte responses to Melan-A peptides in vitro: differential immunogenicity of Melan-A27–35 and Melan-A26-35. Melanoma Res 10: 16–25, 2000

    Google Scholar 

  18. De Backer O, Verheyden AM, Martin B, Godelaine D, De Plaen E, Brasseur R, Avner P, Boon T: Structure, chromosomal location, and expression pattern of three mouse genes homologous to the human MAGE genes. Genomics 28: 74–83, 1995

    Google Scholar 

  19. De Plaen E, De Backer O, Arnaud D, Bonjean B, Chomez P, Martelange V, Avner P, Baldacci P, Babinet C, Hwang SY, Knowles B, Boon T: A new family of mouse genes homologous to the human MAGE genes. Genomics 55: 176–184, 1999

    Google Scholar 

  20. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E: The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Human Immunol 59: 1–14, 1998

    Google Scholar 

  21. Fujie T, Mori M, Ueo H, Sugimachi K, Akiyoshi T: Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol 8: 369–372, 1997

    Google Scholar 

  22. Russo V, Traversari C, Verrecchia A, Mottolese M, Natali PG, Bordignon C: Expression of the MAGE gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy. Int J Cancer 64: 216–221, 1995

    Google Scholar 

  23. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P: Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475, 1987

    Google Scholar 

  24. Bearss DJ, Subler MA, Hundley JE, Troyer DA, Salinas RA, Windle JJ: Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumorsOncogene 19: 1114–1122, 2000

    Google Scholar 

  25. Gravekamp C, Van de Kemp H, Franzen M, Carrington D, Schoone GJ, Van Eys GJ, Everard CO, Hartskeerl RA, Terpstra WJ: Detection of seven species of pathogenic lepto-spires by PCR using two sets of primers. J Gen Microbiol 139: 1691–1700, 1993

    Google Scholar 

  26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25: 3389–3402, 1997

    Google Scholar 

  27. Gravekamp C: Tailoring cancer vaccines to the elderly: the importance of suitable mouse models. Mech Age Dev 122: 1087–1105, 2001

    Google Scholar 

  28. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105–115, 1988

    Google Scholar 

  29. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF: Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC geneScience 256: 668–670, 1992

    Google Scholar 

  30. Edelmann W, Yang K, Umar A, Heyer J, Lau K, Fan K, Liedtke W, Cohen PE, Kane MF, Lipford JR, Yu N, Crouse GF, Pollard JW, Kunkel T, Lipkin M, Kolodner R, Kucherlapati R: Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91: 467–477, 1997

    Google Scholar 

  31. Janitz M, Fiszer D, Jaruzelska J, Simon AK, Biro A, Sachs JA, Kurpisz M: In situ localization of HLA class I mRNA in human testis. Exp Clin Immunogenet 10: 202–207, 1993

    Google Scholar 

  32. Gott JM, Emeson RB: Functions and mechanisms of RNA editing. Annu Rev Genet 34: 499–531, 2000

    Google Scholar 

  33. Loeb LA: A mutator phenotype in cancer. Cancer Res 61: 3230–3239, 2001

    Google Scholar 

  34. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL: Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18: 89–95, 1997

    Google Scholar 

  35. Stickeler E, Kittrell F, Medina D, Berget SM: Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18: 3574–3582, 1999

    Google Scholar 

  36. Pharmingen Catalogue 2000, p 1434

  37. Van der Bruggen P, Bastin J, Gajewski T, Coulie PG, Boel P, De Smet C, Traversari C, Townsend A, Boon T: A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24: 3038–3043, 1994

    Google Scholar 

  38. Lucas S, Brasseur F, Boon T: A new MAGE gene with ubiquitous expression does not code for known MAGE antigens recognized by T cells. Cancer Res 59: 4100–4103, 1999

    Google Scholar 

  39. Lurquin C, De Smet C, Brasseur F, Muscatelli F, Martelange V, De Plaen E, Brasseur R, Monaco AP, Boon T: Two members of the human MAGEB gene family located in Xp21._3 are expressed in tumors of various histological origins. Genomics 46: 397–408, 1997

    Google Scholar 

  40. Van Pel A, De Plaen E, Duffour MT, Warnier G, Uyttenhove C, Perricaudet M, Boon T: Induction of cytolytic T lymphocytes by immunization of mice with an adenovirus containing a mouse homolog of the human MAGE-A genes. Cancer Immunol Immunother 49: 593–602, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sypniewska, R.K., Hoflack, L., Bearss, D.J. et al. Potential Mouse Tumor Model for Pre-Clinical Testing of Mage-Specific Breast Cancer Vaccines. Breast Cancer Res Treat 74, 221–233 (2002). https://doi.org/10.1023/A:1016367104015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016367104015

Navigation