Skip to main content
Log in

Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

HYDRONMR is an implementation of state of the art hydrodynamic modeling to calculate the spectral density functions for NH or Cα-H vectors in a rigid protein structure starting from an atomic level representation. Thus HYDRONMR can be used to predict NMR relaxation times from a rigid model and to compare them with the experimental results. HYDRONMR contains a single adjustable parameter, the atomic element radius. A protocol to determine the value that gives the best agreement between calculated and experimental T1/T2values is described. For most proteins, the value of the atomic element radius ranges between 2.8 Å and 3.8 Å with a distribution centered at 3.3 Å. Deviations from the usual range towards larger values are associated to aggregation in several proteins. Deviations to lower values may be related to large-scale motions or inappropriate model structures.

If the average structure is correct, deviations between experimental T1/T2values and those calculated with HYDRONMR can be used to distinguish residues affected by anisotropic motion from those that are involved in chemical exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akke, M., Brüschweiler, R. and Palmer, III, A.G. (1993) J. Am. Chem. Soc., 115, 9832–9833.

    Google Scholar 

  • Blackledge, M., Cordier, F., Dosset and Marion, D. (1998) J. Am. Chem. Soc., 120, 4538–4539.

    Google Scholar 

  • Campos-Olivas, R., Hörr, I., Bormann, C., Jung, G. and Gronenborn, A.M. (2001) J. Mol. Biol., 308, 765–782.

    Google Scholar 

  • Carrasco, B. and García de la Torre, J. (1999) Biophys. J., 76, 3044–3057.

    Google Scholar 

  • Case, D.A. (1999) J. Biomol. NMR, 15, 95–102.

    Google Scholar 

  • Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion, D. and Blackledge, M. (1998) J. Mol. Biol, 281, 341–361.

    Google Scholar 

  • Cusanovich, M.A. (1971) Biochim. Biophys. Acta, 236, 238–241.

    Google Scholar 

  • Dayie, K.T, Wagner, G. and Lefèvre, J.-F. (1996) Annu. Rev. Phys. Chem., 47, 243–282.

    Google Scholar 

  • de Alba, E., Baber, J.L. and Tjandra, N. (1999) J. Am. Chem. Soc., 121, 4282–4283.

    Google Scholar 

  • Feher, V.A. and Cavanagh, J. (1999) Nature, 400, 289–293.

    Google Scholar 

  • Fernandes, M.X., Bernadó, P., Pons, M. and García de la Torre, J. (2001) J. Am. Chem. Soc., 123, 12037–12047.

    Google Scholar 

  • Fernandes, M.X., Ortega, A., López-Martínez, M.C. and García de la Torre, J. (2002) Nucl. Acids Res., 30, 1782–1788.

    Google Scholar 

  • Filson, D.P. and Bloomfield, V.A. (1967) Biochemistry, 6, 1650–1658.

    Google Scholar 

  • Fischer, M.W.F., Majumdar, A. and Zuiderweg, E.R.P. (1998) Prog. NMR Spectrosc., 33, 207–272.

    Google Scholar 

  • Fushman, D., Cahill, S. and Cowburn, D. (1997) J. Mol. Biol., 266173–94.

    Google Scholar 

  • Fushman, D., Ghose, R. and Cowburn, D. (2000) J. Am. Chem. Soc., 122, 10640–10649.

    Google Scholar 

  • Gagné, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. and Sykes, B.D. (1998) J. Mol. Biol., 278, 667–686.

    Google Scholar 

  • García de la Torre, J. (2001) Biophys. Chem., 93, 159–170.

    Google Scholar 

  • García de la Torre, J. and Bloomfield, V.A. (1977) Biopolymers, 16, 1747–1763.

    Google Scholar 

  • García de la Torre, J. and Bloomfield, V.A. (1981) Quart. Rev. Biophys., 14, 81–139.

    Google Scholar 

  • García de la Torre, J., Huertas, M.L. and Carrasco, B. (2000) Biophys. J., 78, 719–730.

    Google Scholar 

  • García de la Torre, J., Huertas, M.L. and Carrasco, B. (2000) J. Magn. Reson., 147, 138–146.

    Google Scholar 

  • Improta, S., Krueger, J., Gautel, M., Atkinson, R.A., Lefèvre, J.-F., Moulton, S., Trewhella, J. and Pastore, A. (1998) J. Mol. Biol., 284, 761–777.

    Google Scholar 

  • Improta, S., Politou, A.S. and Pastore, A. (1996) Structure, 4, 323–337.

    Google Scholar 

  • Korchuganov, D.S., Nolde, S.B., Reibarkh, M.Y., Orekhov, V.Y., Schulga, A.A., Ermolyuk, Y.S., Kirpichnikov, M.P. and Arseniev, A.S. (2001) J. Am. Chem. Soc., 123, 2068–2069.

    Google Scholar 

  • Korzhev, D.M., Billeter, M., Arseniev, A.S. and Orekhov, V.Y. (2001) Prog. NMR Spectrosc., 38, 197–266.

    Google Scholar 

  • Krishnan, V.V. and Cosman, M. (1998) J. Biomol. NMR, 12, 177–182.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, M., Rance, M. and Palmer, III, A.G. (1998) J. Am. Chem. Soc., 120, 7905–7915.

    Google Scholar 

  • Kroenke, C.D., Rance, M. and Palmer, III, A.G. (1999) J. Am. Chem. Soc., 121, 1019–10125.

    Google Scholar 

  • Li, H., Dunn, J.J., Luft, B.J. and Lawson, C.L. (1997) Proc. Natl. Acad. Sci. USA, 94, 3584–3589.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Mackay, J.P., Shaw, G.L. and King, G.F. (1996) Biochemistry, 35, 4867–4877.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, III, A.G. (1995) J. Mol. Biol., 246, 144–1631.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, III, A.G. (1996) Biochemistry, 35, 16009–16023.

    Google Scholar 

  • Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W. and Kay, L.E. (2001) Nat. Struct. Biol., 8, 932–935.

    Google Scholar 

  • Orekhov, Y.V., Nolde, D.E., Golovanov, A.P., Dorzhenev, D.M. and Arseniev, A.S. (1995) Appl. Magn. Reson., 9, 581–588.

    Google Scholar 

  • Osborne, M.J. and Wright, P.E. (2001) J. Biomol. NMR, 19, 209–230.

    Google Scholar 

  • Palmer, III, A.G., Williams, J. and McDermott, A. (1996) J. Phys. Chem., 100, 13293–13310.

    Google Scholar 

  • Pawley, N.H., Wang, C., Koide, S. and Nicholson, L.K. (2001) J. Biomol. NMR, 20, 149–165.

    Google Scholar 

  • Sahu, S.C., Bhuyan, A.K., Udgaonkar, J.B. and Hosur, R.V. (2000) J. Biomol. NMR, 18, 107–118.

    Google Scholar 

  • Spyracopoulos, L. and Sykes, B.D. (2001) Curr. Opin. Struct. Biol., 11, 555–559.

    Google Scholar 

  • Tahirov, T.H., Shintaro, M., Meyer, T.E., Cusanovich, M., Higuchi, Y. and Yasuako, N. (1996) J. Mol. Biol., 259, 467–479.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443–449.

    Google Scholar 

  • Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273–284.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.

    Google Scholar 

  • Tsan, P., Hus, J.-C., Caffrey, M., Marion, D. and Blackledge, M. (2000) J. Am. Chem. Soc., 122, 5603–5612.

    Google Scholar 

  • Wong, K.-B., Fersht, A.R. and Freund, S.M.V. (1997) J. Mol. Biol., 268, 494–511.

    Google Scholar 

  • Yamasaki, K., Saito, M., Oobatake, M. and Kanaya, S. (1995) Biochemistry, 34, 6587–6601.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1996) J. Mol. Biol., 263, 369–382.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Pons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernadó, P., de la Torre, J.G. & Pons, M. Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. J Biomol NMR 23, 139–150 (2002). https://doi.org/10.1023/A:1016359412284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016359412284

Navigation