Skip to main content
Log in

A Multivariate Partition Approach to Optimization Problems

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

In this paper, a general optimization approach called the Multivariate Partition Approach (MPA) is proposed for dealing with the problem of minimization of multivariate functions. The basic idea of the MPA is to partition all the variables appearing in an optimization problem into several groups, each of which consists of some variables, and to regard each group as a set of active variables for solving the original optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, Mass. (1995).

    Google Scholar 

  2. B. E. J. Dahlberg, “On the distribution of Fekete points,” Duke Mathematical Journal, No. 45, 537–542 (1978).

  3. J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT algorithm,” Journal of Global Optimization (2001) (to be published).

  4. R. P. Ge, “A filled function method for finding a global minimizer of a function of several variables,” Mathematical Programming, No. 46, 191–204 (1990).

  5. R. P. Ge and Y. F. Qin, “A class of filled functions for finding global minimizers of a function of several variables,” Journal of Optimization Theory and Applications, No. 54(2), 241–252 (1987).

    Google Scholar 

  6. G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD (1989).

    Google Scholar 

  7. M. R. Hoare, “Structure and dynamics of simple microclusters,” Advances in Chemical Physics, No. 40, 49–135 (1979).

  8. R. Hooke and T. A. Jeeves, ”Direct search for solution of numerical and statistical problems,” J. ACM, 8, 212-229 (1961).

    Google Scholar 

  9. R. Horst and P. M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, Dordrecht, Netherlands (1995).

    Google Scholar 

  10. R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global Optimization, Kluwer, Dordrecht, Netherlands (2000).

    Google Scholar 

  11. H. X. Huang, P. M. Pardalos, and Z. J. Shen, “A Point Balance Algorithm for the Spherical code problem,” Journal of Global Optimization, 19, No. 4, 329–344 (2001).

    Google Scholar 

  12. H. X. Huang, P. M. Pardalos, and Z. J. Shen, “Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem,” Journal of Global Optimization (2000) (to be published).

  13. R. H. Leary, “Global optima of Lennard–Jones clusters,” Journal of Global Optimization, No. 11, 35-53 (1997).

  14. A.V. Levy and S. Gomes, “The tunneling method applied to global optimization,” in: P. T. Boggs, R. H. Byrd, and R. B. Schnabel (eds.), Numerical Optimization, SIAM (1985), pp. 213–244.

  15. D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, Mass. (1984).

    Google Scholar 

  16. A. Migdalas, P. M. Pardalos, and P. Varband, Multilevel Optimization: Algorithms and Applications, Kluwer, Dordrecht, Netherlands (1998).

    Google Scholar 

  17. J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NJ (1999).

    Google Scholar 

  18. J. A. Northby, “Structure and binding of Lennard–Jones clusters: 13≤N≤147,” Journal of Chemical Physics, 87, 6166–6177 (1987).

    Google Scholar 

  19. P. M. Pardalos, D. Shalloway, and G. Xue (eds.), “Global minimization of nonconvex energy functions: Molecular Conformation and Protein Folding,” DIMACS Series, Vol. 23, American Mathematical Society (1996).

  20. P. M. Pardalos and G. Xue (eds.), Special Issue on Advances in Computational Chemistry and Protein Folding, Journal of Global Optimization, 4, No. 2 (1994).

  21. P. M. Pardalos and G. Xue (eds.), Special Issue on Computer Simulations in Molecular and Protein Conformations, Journal of Global Optimization, 11, No. 1 (1997).

  22. J. D. Pinter, Global Optimization in Action, Kluwer, Dordrecht, Netherlands (1996).

    Google Scholar 

  23. S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function,” Zh. Vychisl. Mat. Mat. Fiz., 12, 57–67 (1972).

    Google Scholar 

  24. E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, “Minimal discrete energy on the sphere,” Mathematical Research Letters, 1, 647–662 (1994).

    Google Scholar 

  25. E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou, “Electrons on the sphere,” in: R. M. Ali, St. Ruschweyh, and E. B. Saff (eds.), Computational Methods and Function Theory, World Scientific, Singapore (1995), pp. 111–127.

    Google Scholar 

  26. E. B. Saff and A. B. J. Kuijlaars, “Distributing many points on a sphere,” The Mathematical Intelligencer, 19, No. 1, 5–11 (1997).

    Google Scholar 

  27. M. Shub and S. Smale, “Complexity of Bezout theorem III: Condition number and packing,” Journal of complexity, 9, 4–14 (1993).

    Google Scholar 

  28. N. J. A. Sloane, Spherical Codes, Web: http://www.research.att.com/~njas/.

  29. S. Smale, “Mathematical problems for the next century,” in: Mathematics: Frontiers and Perspectives 2000, American Mathematical Society (2000), pp. 271–294; Mathematical Intelligencer, 20, No. 2, 7–15 (1997).

    Google Scholar 

  30. V. Torczon, “On the Convergence of Pattern Search Algorithms,” SIAM J. Optimiz., 7, No. 1, 1–25 (1997).

    Google Scholar 

  31. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, Japan (1959).

    Google Scholar 

  32. S. A. Vavasis, “Approximation algorithms for indefinite quadratic programming,” Mathematical Programming, 57, 279–311 (1992).

    Google Scholar 

  33. D. J. Wales and H. A. Scheraga, “Global optimization of clusters, crystals, and biomolecules,” Science, 285, 1368–1372 (1999).

    Google Scholar 

  34. L. L. Whyte, “Unique arragements of points on a sphere,” The American Mathematical Monthly, 59, 606-611 (1952).

    Google Scholar 

  35. Z. Xu, H. X. Huang, P. M. Pardalos, and C. X. Xu, “Filled functions for unconstrained global optimization,” Journal of Global Optimization, 20, No. 1, 49-65 (2001).

    Google Scholar 

  36. G. Xue, “Improvement of the northy algorithm for molecular conformation: Better solutions,” Journal of Global Optimization, No. 4, 425-440 (1994).

  37. B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, “The geometry of small fullerene cages:C20 to C70,” Journal of Chemical Physics, 97, No. 7, 5007–5011 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H.X., Pardalos, P.M. A Multivariate Partition Approach to Optimization Problems. Cybernetics and Systems Analysis 38, 265–275 (2002). https://doi.org/10.1023/A:1016351614255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016351614255

Navigation