Skip to main content
Log in

Quantitative and molecular characterization of heat tolerance in hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Understanding the genetic basis of tolerance to high temperature is important for improving the productivity of wheat (Triticum aestivum L.) in regions where the stress occurs. The objective of this study was to estimate inheritance of heat tolerance and the minimum number of genes for the trait in bread wheat by combining quantitative genetic estimates and molecular marker analyses. Two cultivars, Ventnor (heat-tolerant) and Karl92 (heat-susceptible), were crossed to produce F1, F2, and F3populations, and their grain-filling duration (GFD) at 30/25 °C 16/8 h day/night was determined as a measure of heat tolerance. Distribution of GFD in the F1 and F2 populations followed the normal model (χ2, p > 0.10). A minimum of 1.4 genes with both additive and dominance effects, broad-sense heritability of 80%, and realized heritability of 96%for GFD were determined from F2 and F3 populations. Products from 59primer pairs among 232 simple sequence repeat (SSR) pairs were polymorphic between the parents. Two markers, Xgwm11 andXgwm293, were linked to GFD by quantitative trait loci (QTL) analysis of the F2 population. The Xgwm11-linked QTL had only additive gene action and contributed 11% to the total phenotypic variation in GFD in the F2population, whereas the Xgwm293-linked QTL had both additive and dominance action and contributed 12% to the total variation in GFD. The results demonstrated that heat tolerance of common wheat is controlled by multiple genes and suggested that marker-assisted selection with microsatellite primers might be useful for developing improved cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Khatib, K. & G.M. Paulsen, 1990. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major word regions. Crop Sci 30: 1127–1132.

    Article  Google Scholar 

  • Blum, A., 1988. Plant Breeding for Stress Environments. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Burton, G.W., 1951. Quantitative inheritance in pearl millet (Pennistum glaucum). Agron J 9: 409–417.

    Article  Google Scholar 

  • Dubcovsky, J., M.C. Luo & J. Dvorák, 1995. Linkage relationships among stress-induced genes in wheat. Theor Appl Genet 91: 795–801.

    Article  CAS  Google Scholar 

  • Fahima, T., M.S. Röder, A. Grama & A. Nevo, 1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 91: 187–195.

    Article  Google Scholar 

  • Falconer, D.S., 1981. Introduction to Quantitative Genetics. pp. 151–169. Longman Inc., New York, NY.

    Google Scholar 

  • Ferara, O., S. Rajaram & M.G. Mosaad, 1994. Breeding strategies for improving wheat in heat-stressed environments. In: D.A. Saunders & G.P. Hettel (Eds.), Wheat in Heat-Stressed Environments: Irrigated, Dry Area and Rice-Wheat Farming Systems, pp. 127–142. CIMMYT, Mexico, DF.

    Google Scholar 

  • Fokar, M., H.T. Nguyen & A. Blum, 1998. Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica 104: 1–8.

    Article  Google Scholar 

  • Korzun, V., A. Börner, A.J. Wordland, C.N. Law & M.S. Röder, 1997a. Application of microsatellite markers to distinguish intervarietal chromosome substitution lines of wheat (Triticum aestivum L.). Euphytica 95: 147–155.

    Article  Google Scholar 

  • Korzun, V., M.S. Röder, K. Wendehake, A. Pasqulone, C. Lotti, M.W. Ganal & A. Blanco, 1999. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98: 1202–1207.

    Article  CAS  Google Scholar 

  • Korzun, V., M.S. Röder, A.J. Wordland & A. Börner, 1997b. Mapping of the dwarfing (Rht12) and vernalisation response (Vrn1) genes in wheat by using RFLP and microsatellite markers. Plant Breed 116: 227–232.

    Article  Google Scholar 

  • Lande, R., 1981. The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541–553.

    PubMed  CAS  Google Scholar 

  • Liu, B.H., 1998. Statistical Genomics, pp. 387–416, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Melchinger, A.E., 1998. Advances in the analysis of data on quantitative trait loci. In: V.L. Chopra, R.B. Singh & A. Varma (Eds.), Crop Productivity and Sustainability: Shaping the Future, pp. 773–791. Oxford & IBH Publ, New Delhi, India.

    Google Scholar 

  • Moffatt, J.M., R.G. Sears, T.S. Cox & G.M. Paulsen, 1990. Wheat high temperature tolerance during reproductive growth. II. Genetic analysis of chlorophyll fluorescence. Crop Sci 30: 886–889.

    Article  CAS  Google Scholar 

  • Ottaviano, E.M.S., E.P. Gorla & C. Frova, 1991. Molecular marker (RFLP and HSPs) for the genetic dissection of thermotolerance in maize. Theor Appl Genet 81: 713–719.

    Article  CAS  Google Scholar 

  • Paulsen, G.M., 1994. High temperature responses of crop plants. In: K.J. Boote, I.M. Bennet, T.R. Sinclair & G.M. Paulsen (Eds.), Physiology and Determination of Crop Yield, pp. 365–389. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Penner, G.A., J. Clarke, L.J. Bezte & D. Leisle, 1995. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Theor Appl Genet 38: 543–540.

    CAS  Google Scholar 

  • Plaschke, J. & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheats using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Porter, D.R., H.T. Nguyen & J.J. Burke, 1995. Gentic control of acquired high temperatrue tolerance in winter wheat. Euphytica 83: 153–159.

    Article  Google Scholar 

  • Powere, L. & C. Lyon, 1941. Inheritance studies on duration of developmental stages in crosses within the genus Lycopersicon. J Agric Res 63: 129–148.

    Google Scholar 

  • Prasad, M., R.K. Warshney, A. Kumar, H.S. Balyan, P.C. Sharma, K.J. Edwards, H. Singh, H.S. Dhaliwal, J.K. Roy & P.K. Gupta, 1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99: 341–345.

    Article  Google Scholar 

  • Reynolds, M.P., M. Balota, M.I.B. Delgado, I. Amani & R.A. Fischer, 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21: 717–730.

    Google Scholar 

  • Röder, M.S., J. Plaschke, S.U. König, A. Börner, M.E. Sorrells, S.D. Tanksley & M.W. Ganal, 1995. Abundance, variability and chromosomal location of microsatellite loci in wheat. Mol Gen Genet 246: 327–333.

    Article  PubMed  Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics, pp. 1–72. Chapman & Hall, New York, NY.

    Google Scholar 

  • Roy, J.K., M. Prasad, R.K. Varshney, H.S. Balyan, T.K. Blake, H.S. Dhaliwal, H. Singh, K.J. Edwards & P.K. Gupta, 1999. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99: 336–340.

    Article  Google Scholar 

  • Saadalla, M.M., J.F. Shanahan & J.S. Quick, 1990. Heat tolerance in winter wheat. I. Hardening and genetic effects on membrane thermostability. Crop Sci 30: 1243–1247.

    Article  Google Scholar 

  • SAS, 1995. Release 6.11 TS040 for Windows. SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Shah, M.M., K.S. Gill, P.S. Baenziger, Y. Yen, S.M. Kaeppler & H.M. Ariyarathne, 1999. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39: 1728–1732.

    Article  CAS  Google Scholar 

  • Stephenson, P., G. Bryan, J. Kirby, A. Collins, K. Devos, C. Busso & M. Gale, 1998. Fifty new microsatellite loci for wheat genetic map. Theor Appl Genet 97: 946–949.

    Article  CAS  Google Scholar 

  • Stone, P.J. & M.E. Nicolas, 1995. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. Grain growth. Aust J Plant Physiol 22: 927–934.

    Google Scholar 

  • Sun, Q.X. & R.Q. Xu, 1998. Genetic control of tolerance to high temperature stress in wheat. In: A.E. Slinkard (Ed.), Proc 9th Int Wheat Genet Symp Vol. 1, pp. 236–244. University Extension Press, Saskatoon, Canada.

    Google Scholar 

  • Wardlaw, I.F., I.A. Dawson, P. Munibi & R. Fewster, 1989a. The tolerance of wheat to high temperatures drying reproductive growth. I. Survey procedures and general response patterns. Aust J Agric Res 40: 1–13.

    Article  Google Scholar 

  • Wardlaw, I.F., I.A. Dawson & P. Munibi, 1989b. The tolerance of wheat to high temperatures during reproductive growth. II. Grain development. Aust J Agric Res 40: 15–24.

    Article  Google Scholar 

  • Wardlaw, I.F. & C.W. Wrigley, 1994. Heat tolerance in temperate cereals: An overview. Aust J Plant Physiol 21: 695–703.

    Article  Google Scholar 

  • Wright, S., 1968. Evolution and the genetics of populations. Vol. 1, Genetic and Biometric Foundations. Univ. of Chicago, Chicago, IL.

    Google Scholar 

  • Yang, J., R.G. Sears, B.S. Gill & G.M. Paulsen, 2001. Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Sears, R., Gill, B. et al. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126, 275–282 (2002). https://doi.org/10.1023/A:1016350509689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016350509689

Navigation