Skip to main content
Log in

On the Hamiltonian Hopf Bifurcations in the 3D Hénon–Heiles Family

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

An axially symmetric perturbed isotropic harmonic oscillator undergoes several bifurcations as the parameter λ adjusting the relative strength of the two terms in the cubic potential is varied. We show that three of these bifurcations are Hamiltonian Hopf bifurcations. To this end we analyse an appropriately chosen normal form. It turns out that the linear behaviour is not that of a typical Hamiltonian Hopf bifurcation as the eigen-values completely vanish at the bifurcation. However, the nonlinear structure is that of a Hamiltonian Hopf bifurcation. The result is obtained by formulating geometric criteria involving the normalized Hamiltonian and the reduced phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aizawa, Y., and Saitô, N. (1972). On the stability of isolating integrals. I. Effect of the perturbation in the potential function. J. Phys. Soc. Japan 32, 1636–1640.

    Google Scholar 

  2. Braun, M. (1973). On the applicability of the third integral of motion. J. Differential Equations 13, 300–314.

    Google Scholar 

  3. Cotter, C. (1986). The 1:1 Semisimple Resonance. Ph.D. thesis, University of California at Santa Cruz.

  4. Cushman, R. (1982). Geometry of the bifurcations of the normalized reduced Hénon-Heiles family. Proc. Roy. Soc. London Ser. A 382, 361–371.

    Google Scholar 

  5. Cushman, R., and Van der Meer, J. C. (1990). The Hamiltonian hopf bifurcation in the lagrange top. In Albert, C. (ed.), Géométric Symplectique et Mécanique, La Grande Motte 1988, LNM, Vol. 1416, Springer-Verlag, Berlin, pp. 26–38.

    Google Scholar 

  6. Cushman, R., Ferrer, S., and Hanßmann, H. (1999). Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillator. Nonlinearity 12, 389–410.

    Google Scholar 

  7. Farrelly, D., Humpherys, J., and Uzer, T. (1994). Normalization of resonant Hamiltonians. In Seimenis, J. (ed.), Hamiltonian Mechanics, Integrability and Chaotic Behavior, Torun 1993, Plenum, New York, pp. 237–244.

    Google Scholar 

  8. Ferrer, S., Lara, M., Palacián, J., San Juan, J. F., Viartola, A., and Yanguas, P. (1998). The Hénon and Heiles problem in three dimensions. I. Periodic orbits near the origin. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 8, 1199–1213.

    Google Scholar 

  9. Ferrer, S., Lara, M., Palacián, J., San Juan, J. F., Viartola, A., and Yanguas, P. (1998). The Hénon and Heiles problem in three dimensions. II. Relative equilibria and bifurcations in the reduced system. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 8, 1215–1229.

    Google Scholar 

  10. Ferrer, S., Palacián, J., and Yanguas, P. (2000). Hamiltonian oscillators in 1:1:1 resonance: Normalization and integrability. J. Nonlinear Sci. 10, 145–174.

    Google Scholar 

  11. Ferrer, S., Hanßmann, H., Palacián, J., and Yanguas, P. (2002). On perturbed oscillators in 1:1:1 resonance: The case of axially symmetric cubic potentials. J. Geom. Phys. 40, 320–369.

    Google Scholar 

  12. Fradkin, D. M. (1965). Three-dimensional isotropic harmonic oscillator and SU 3. Amer. J. Phys. A 33, 207–211.

    Google Scholar 

  13. Hanßmann, H., and Sommer, B. (2001). A degenerate bifurcation in the Hénon-Heiles family. Celestial Mech. Dynam. Astronom. 81, 249–261.

    Google Scholar 

  14. Hénon, M., and Heiles, C. (1964). The applicability of the third integral of motion: Some numerical experiments. Astron. J. 69, 73–79.

    Google Scholar 

  15. Kummer, M. (1976). On resonant nonlinearly coupled oscillators with two equal frequencies. Comm. Math. Phys. 48, 53–79.

    Google Scholar 

  16. Van der Meer, J. C. (1985). The Hamiltonian Hopf Bifurcation, LNM, Vol. 1160, Springer-Verlag, Berlin.

    Google Scholar 

  17. Van der Meer, J. C. (1990). Hamiltonian Hopf bifurcation with symmetry. Nonlinearity 3, 1041–1056.

    Google Scholar 

  18. Van der Meer, J. C. (1996). Degenerate Hamiltonian Hopf bifurcations. Fields Inst. Commun. 8, 159–176.

    Google Scholar 

  19. Miller, B. R. (1991). The lissajous transformation-III. parametric bifurcations. Celestial Mech. Dynam. Astronom. 51, 251–270.

    Google Scholar 

  20. Moser, J. (1970). Regularization of Kepler's problem and the averaging method on a manifold. Comm. Pure Appl. Math. 23, 609–636.

    Google Scholar 

  21. Verhulst, F. (1979). Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies. Philos. Trans. Roy. Soc. London Ser. A 290, 435–465.

    Google Scholar 

  22. Yanguas, P. (1998). Integrability, Normalization and Symmetries of Hamiltonian Systems in 1:1:1 Resonance. Ph.D. thesis, Universidad Pu´ blica de Navarra.

  23. De Zeeuw, T. (1985). Motion in the core of a triaxial potential. Mon. Not. R. Astr. Soc. 215, 731–760.

    Google Scholar 

  24. De Zeeuw, T., and Franx, M. (1991). Structure and dynamics of elliptical galaxies. Annu. Rev. Astron. Astrophys. 29, 239–274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Cees van der Meer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanßmann, H., van der Meer, JC. On the Hamiltonian Hopf Bifurcations in the 3D Hénon–Heiles Family. Journal of Dynamics and Differential Equations 14, 675–695 (2002). https://doi.org/10.1023/A:1016343317119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016343317119

Navigation