Skip to main content
Log in

Scalar Charged Particle in Weyl–Wigner–Moyal Phase Space. Constant Magnetic Field

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A relativistic phase-space representation for a class of observables with matrix-valued Weyl symbols proportional to the identity matrix (charge-invariant observables) is proposed. We take into account the nontrivial charge structure of the position and momentum operators. The evolution equation coincides with its analog in relativistic quantum mechanics with nonlocal Hamiltonian under conditions where particle-pair creation does not take place (free particle and constant magnetic field). The differences in the equations are connected with the peculiarities of the constraints on the initial conditions. An effective increase in coherence between eigenstates of the Hamiltonian is found and possibilities of its experimental observation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Lev, A. A. Semenov, and C. V. Usenko, J. Phys. A: Math. Gen., 34, 4323 (2001).

    Google Scholar 

  2. H. Feshbach and F. Villars, Rev. Modern. Phys., 30, 24 (1958).

    Google Scholar 

  3. S. P. Gavrilov and D. M. Gitman, Int. J. Mod. Phys. A, 15 4499 (2000); Class. Quantum Gravit., 17, L133 (2000); 18, 2989 (2001).

    Google Scholar 

  4. T. D. Newton and E. P. Wigner, Rev. Mod. Phus., 21, 400 (1949).

    Google Scholar 

  5. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. A, 78, 29 (1950).

    Google Scholar 

  6. Z. K. Silagadze, “The Newton-Wigner position operator and the domain of validity of one-particle relativistic theory,” Preprint SLAC-PUB-5754 Rev (1993).

  7. S. R. de Groot, W. A. van Leeuwen, and Ch. G. van Weert, Relativistic Kinetic Theory. Principles and Applications, North-Holland, Amsterdam (1980).

    Google Scholar 

  8. A. A. Rukhadze and V. P. Silin, Zh. Éksp. Teor. Fiz., 38, 645 (1960).

    Google Scholar 

  9. S. R. de Groot and L. G. Suttorp, Fundations of Electrodynamics, North-Holland, Amsterdam (1972).

    Google Scholar 

  10. Y. S. Kim and E. P. Wigner, Phys. Rev. A, 38, 1159 (1988); 39, 2829 (1989).

    Google Scholar 

  11. Chang-Ho Kim and Y. S. Kim, J. Math. Phys., 32, 1998 ((1991).

    Google Scholar 

  12. S. Tomonaga, Prog. Theor. Phys., 1, 27 (1946). J. Schwinger, Phys. Rev., 74, 1439 (1948).

    Google Scholar 

  13. A. Suarez and V. Scarani, Phys. Lett. A, 232, 9 (1997). H. Zbinden, J. Brendel, W. Tittel, and N. Gisin, J. Phys. A: Math. Gen., 34, 7103 (2001); Phys. Rev. A, 63, 02211 (2001). A. Stefanov, H. Zbingen and N. Gisin, “Quantum correlations versus multisimultaneity: an experiment test,” Preprint quant-ph/0110117 (2002). S. Hacyan, Phys. Lett. A, 288, 59 (2001).

    Google Scholar 

  14. A. J. Bracken and G. F. Melloy, J. Phys. A: Math. Gen., 32, 6127 (1999).

    Google Scholar 

  15. B. I. Lev, A. A. Semenov, and C. V. Usenko, Phys. Lett. A, 230, 261 (1997).

    Google Scholar 

  16. H.-J. Briegel, B.-G. Englert, M. Michaelis, and G. Süssmann, Z. Naturforsch., 46a, 925 (1991). H.-J. Briegel, B.-G. Englert, and G. Süssmann, Z. Naturforsch., 46a, 933 (1991).

    Google Scholar 

  17. M. S. Bartlett and J. E. Moyal, Proc. Cambridge Philos. Soc., 45, 545 (1949).

    Google Scholar 

  18. T. Curtright, T. Uematsu, and C. Zachos, J. Math. Phys., 42, 2396 (2001).

    Google Scholar 

  19. D. Fairlie, Proc. Cambridge Philos. Soc., 60, 581 (1964).

    Google Scholar 

  20. E. P. Wigner, Z. Phys., 133, 101 (1952). G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev., 88, 101 (1952).

    Google Scholar 

  21. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Energoatomizdat, Moscow (1988).

    Google Scholar 

  22. V. I. Tatarskii, Sov. Phys.-Uspekhi, 26, 311 (1983).

    Google Scholar 

  23. E. Joos and H. D. Zeh, Z. Phys. B, 59, 223 (1984). E. Joos, Phys. Rev. D, 29, 1626 (1984). W. H. Zurek, Phys. Rev. D, 24, 1516 1981); 26, 1862 (1982); Nature, 412, 712 (2001). L. Stodolsky, Phys. Lett. B, 116, 464 (1982). M. V. Menskii, Phys.-Uspekhi, 43, 585 (2000). S. A. Kilin, Phys.-Uspekhi, 42, 435 (1999).

    Google Scholar 

  24. G. M. D'Ariano, S. Mancini, V. I. Man'ko, and P. Tombesi, J. Opt. B: Quantum Semiclass. Opt., 8, 1017 (1996). S. Mancini, V. I. Man'ko, and P. Tombesi, J. Mod. Opt., 44, 2281 (1997).

    Google Scholar 

  25. V. V. Dodonov and S. S. Mizrahi, Phys. Lett. A, 117, 394 (1993).

    Google Scholar 

  26. M. N. Johnson and B. A. Lippmann, Phys. Rev., 76 828 (1949).

    Google Scholar 

  27. H. Bateman and A. Erdélyi, Higher Transcendental Functions, McGraw-Hill, New York (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev, B.I., Semenov, A.A. & Usenko, C.V. Scalar Charged Particle in Weyl–Wigner–Moyal Phase Space. Constant Magnetic Field. Journal of Russian Laser Research 23, 347–368 (2002). https://doi.org/10.1023/A:1016342310852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016342310852

Navigation