Skip to main content
Log in

Nanoscale Surface Roughness Contribution to the Kapitza Resistance Between Superfluid He and Silicon

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the Kapitza resistance have been made on single Si(001) crystals at T > 1.5 K. The surface morphology of the samples was characterised by Atomic Force Microscopy (AFM). The results, interpreted using the Adamenko and Fuks (AF) model, demonstrate that nanometre-scale roughness produces diffuse and/or resonant phonon scattering. This explains the discrepancy between the measured Kapitza resistance and the Khalatnikov values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. N. Adamenko and I. M. Fuks, Sov. Phys. J. E. T. P. 32, 1123 (1971).

    Google Scholar 

  2. I. M. Khalatnikov, Introduction to the Theory of Superfluidity, Benjamin, New York, (1965), Chap. 23.

    Google Scholar 

  3. T. Nakayama, in Progress in Low Temperature Physics, F. Brewer (ed.) (1989), Vol. XII, pp. 115-194, Chap. 3.

  4. N. S. Shiren, Phys. Rev. Lett. 47, 1466 (1981).

    Google Scholar 

  5. T. Klitsner and R. O. Pohl, Phys. Rev. B 36, 6551 (1987).

    Google Scholar 

  6. H. Kinder, A. Ninno, D. Goodstein, G. Paterno, and F. Scaramuzzi, Phys. Rev. Lett. 55, 2441 (1985).

    Google Scholar 

  7. J. Weber, W. Sandmann, W. Dietsche, and H. Kinder, Phys. Rev. Lett. 40, 1469 (1978).

    Google Scholar 

  8. J. M. Elson and J. M. Bennett, J. Opt. Soc. Am. 69, 31 (1979).

    Google Scholar 

  9. The heat flux is given by \(\dot Q = \frac{\hbar }{{(2\pi c_l )^2 }}\int {_0^\infty \;n(k,\;\omega )\;\omega ^3 \;d\omega } \;\int {_0^1 \;\tau (k,\vartheta )\;\cos \vartheta d(\cos \vartheta )} \) as in Ref. 2.

    Google Scholar 

  10. For \(\Theta \) ⩽ 0.3, f(\(\Theta \)) increases as ≈ 169\(\Theta \) 2. For \(\Theta \) > 0.3, f(\(\Theta \)) decreases rapidly and in the limit \(\Theta \) ≫ 1, f(\(\Theta \)) ≈ 0.92+0.038/\(\Theta \) 2.

  11. J. Amrit and M. X. François, J. Low Temp. Phys. 119, 27 (2000).

    Google Scholar 

  12. P. E. Hegeman, H. J. W. Zandvliet, G. A. M. Kip, and A. van Silfhout, Surface Science 311, L655-660 (1994).

    Google Scholar 

  13. A. L. Barabasi and A. E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press (1995), Chap. 3.

  14. J. C. Russ, Fractal Surfaces, Plenum Press, New York (1994), Chap. 8.

    Google Scholar 

  15. R. C. Johnson and W. A. Little, Phys. Rev. 130, 596 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amrit, J., François, M.X. Nanoscale Surface Roughness Contribution to the Kapitza Resistance Between Superfluid He and Silicon. Journal of Low Temperature Physics 128, 113–121 (2002). https://doi.org/10.1023/A:1016341826786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016341826786

Keywords

Navigation