Skip to main content
Log in

Characterization of an In Vitro Blood–Brain Barrier Model System for Studying Drug Transport and Metabolism

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Bovine brain micro vessel endothelial cells have been isolated and grown in culture to monolayers. These endothelial cell monolayers have been characterized morphologically with electron microscopy, histochemically for brain endothelium enzyme markers, alkaline phosphatase and γ-glutamyl trans-peptidase, and by immunofluorescence to detect Factor VIII antigen, an exclusive endothelial antigen. Results of these studies indicate that the cells forming the monolayers are of endothelial origin and possess many features of the in vivo brain endothelium responsible for formation of the blood–brain barrier. This in vitro blood–brain barrier model system was used in experiments to determine the permeability of the cultured monolayer to sucrose, leucine, and propranolol. Leucine rapidly moved across the monolayers of this in vitro system and tended to plateau after approximately 10 min. In contrast, the rates of sucrose and propranolol movement were linear during a 1-hr observation period, with the rate of propranolol movement across the monolayer greater than that of sucrose. The ability to detect differences in the permeability of the monolayers to leucine, propranolol, and sucrose with radioactive tracers suggests that this in vitro model system will be an important tool for the investigation of the role of the blood–brain barrier in the delivery of centrally acting drugs and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. S. Reese and M. J. Karnovsky. J. Cell Biol. 34:207–217 (1967).

    Google Scholar 

  2. M. W. Brightman and T. S. Reese. J. Cell Biol. 40:648–677 (1969).

    Google Scholar 

  3. M. Bradbury. In The Concept of a Blood Brain Barrier, Wiley & Sons, New York, Chichester, 1979.

    Google Scholar 

  4. S. I. Rapoport. In Blood Brain Barrier in Physiology and Medicine, Raven Press, New York, 1976.

    Google Scholar 

  5. P. D. Bowman, S. R. Ennis, K. E. Rarey, A. L. Betz, and G. W. Goldstein. Ann. Neurol. 14:396–402 (1983).

    Google Scholar 

  6. P. D. Bowman, A. L. Betz, J. S. Wolinsky, J. B. Penney, R. R. Shivers, and G. W. Goldstein. In Vitro 17:353–362 (1981).

    Google Scholar 

  7. G. Michelopoulis and H. Pitot. Exp. Cell Res. 94:70–78 (1975).

    Google Scholar 

  8. G. G. Glenner, J. E. Folk, and P. J. McMillan. J. Histochem. Cytochem. 10:481–489 (1962).

    Google Scholar 

  9. M. L. Caspers and C. A. Diglio. Biochim. Biophys. Acta 803:1–6 (1984).

    Google Scholar 

  10. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  11. E. A. Jaffe, L. W. Hoyer, and R. L. Nachman. J. Clin. Invest. 52:2757–2764 (1973).

    Google Scholar 

  12. L. E. DeBault, L. E. Kahn, S. P. Frommes, and P. A. Cancilla. In Vitro 15:473–487 (1979).

    Google Scholar 

  13. P. Phillips, P. Kumar, S. Kumar and M. Waghe. J. Anat. 129:261–272 (1979).

    Google Scholar 

  14. S. K. Williams, J. F. Gillis, M. A. Matthews, R. C. Wagner, and M. W. Bitensky. J. Neurochem. 35:374–381 (1980).

    Google Scholar 

  15. M. Spatz, J. Bembry, R. F. Dodson, H. Hervonen, and M. R. Murray. Brain Res. 191:577–582 (1980).

    Google Scholar 

  16. M. Orlowski, G. Sessa, and J. P. Green. Science 184:66–68 (1974).

    Google Scholar 

  17. B. M. Djuricic and B. B. Mrsulja. Brain Res. 138:561–564 (1977).

    Google Scholar 

  18. A. Baranczyk-Kuzma, K. L. Audus, and R. T. Borchardt. J. Neurochem. (in press).

  19. E. A. Jaffe. N. Engl. J. Med. 296:377–383 (1977).

    Google Scholar 

  20. K. Dorovini-Zis, P. D. Bowman, A. L. Betz, and G. W. Goldstein. Brain Res. 320:383–386 (1984).

    Google Scholar 

  21. S. I. Rapoport, W. R. Fredricks, K. Ohno, and K. D. Pettigrew. Am. J. Physiol. 238:R421–431. (1980).

    Google Scholar 

  22. K. L. Audus and R. T. Borchardt. J. Neurochem. (in press).

  23. W. M. Pardridge, R. Sakiyama, G. Fierer. Am. J. Physiol. 247:R582–R588 (1984).

    Google Scholar 

  24. W. M. Pardridge, R. J. Wurtman and J. J. Wurtman (eds.), In Nutrition and the Brain, Raven Press, New York, 1977, pp. 141–203.

    Google Scholar 

  25. A. F. Sved, I. M. Goldberg, and J. D. Fernstrom. J. Pharmacol. Exp. Ther. 214:147–151 (1980).

    Google Scholar 

  26. J. G. Nutt, W. R. Woodward, J. P. Hammerstad, J. H. Carter, and J. L. Anderson. N. Engl. J. Med. 310:483–488 (1984).

    Google Scholar 

  27. P. A. Cancilla and L. E. DeBault. J. Neuropathol. Exp. Neurol. 42:191–199 (1983).

    Google Scholar 

  28. A. L. Betz and G. W. Goldstein. Science 202:225–227 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audus, K.L., Borchardt, R.T. Characterization of an In Vitro Blood–Brain Barrier Model System for Studying Drug Transport and Metabolism. Pharm Res 3, 81–87 (1986). https://doi.org/10.1023/A:1016337202335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016337202335

Navigation