Skip to main content
Log in

Population Waves as a Condition for Increasing Ecological Stability of Organisms in the Process of Vertical Evolution

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Ecological stability of an organism, which determines the possibility of its existence under changing environmental conditions, can be estimated as the probability of the participation of each viable offspring in reproduction. In developing species, the periodic rises and falls in the population size (Chetverikov's “waves of life”) can lead to changes in ecological stability, which is of macroevolutionary importance. Under conditions of isolation such changes generally result in specialization of intraspecific races but they could then lead to an increase in ecological stability of hybrid forms. Ecological stability of prosperous species increases during macroevolution due to combinative recombination between specialized intraspecific races or closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Timofeeff-Ressovsky, N.V., Genetics and Evolution (A Zoologist's Viewpoint), Izbrannye trudy (Selected Works), Gazenko, O.G. and Ivanov, V.I., Eds., Moscow: Meditsyna, 1996, pp. 203-263.

    Google Scholar 

  2. Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Brief Essay on the Evolutionary Theory), Moscow: Nauka, 1977.

    Google Scholar 

  3. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Google Scholar 

  4. Drake, J.W., A Constant Rate of Spontaneous Mutation in DNA-Based Microbes, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 7160-7164.

    Google Scholar 

  5. Drake, J.W., Charlesworth, B., Charlesworth, D., and Crow, J.F., Rates of Spontaneous Mutation, Genetic s, 1998, vol. 148, pp. 1667-1686.

    Google Scholar 

  6. Chetverikov, S.S., Life Waves (From Observation of Lepidoptera in Summer, 1903), Dnevn. Zool. Otd. Imp. O-va Lyubit. Estestv., 1905, vol. 3, no. 6, pp. 103-105 (see also Priroda, 1980, no. 11, pp. 95–99).

    Google Scholar 

  7. Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1978.

    Google Scholar 

  8. Fisher, R.A., The Genetical Theory of Natural Selection, New York: Dover, 1958, 2nd ed.

    Google Scholar 

  9. Sukhodolets, V.V., A Genetic Explanation of Vertical Evolution, Genetika (Moscow), 2001, vol. 37, no. 2, pp. 165-174.

    Google Scholar 

  10. Tiffney, B.H. and Niklas, K.J., Clonal Growth in Land Plants: A Paleobotanical Perspective, Population Biology and Evolution, Jackson, J.B.C., Buss, L.W., and Cook, R.E., Eds., New Haven and London: Yale Univ. Press, 1985, pp. 35-66.

    Google Scholar 

  11. Sukhodolets, V.V., Fitness, Ecological Stability, and Evolution of Diploid Organisms, Genetika (Moscow), 2000, vol. 36, no. 1, pp. 5-16.

    Google Scholar 

  12. Shields, D.C., Sharp, P.M., Higgins, D.G., and Wright, F., “Silent” Sites in Drosophila Genes Are Not Neutral: Evidence of Selection among Synonymous Codons, Mol. Biol. Evol., 1988, vol. 5, pp. 704-716.

    Google Scholar 

  13. Bulmer, M., The Selection-Mutation-Drift Theory of Synonymous Codon Usage, Genetics, 1991, vol. 129, pp. 897-907.

    Google Scholar 

  14. Cooper, W.S., Expected Time to Extinction and the Concept of Fundamental Fitness, J. Theor. Biol., 1984, vol. 107, pp. 603-629.

    Google Scholar 

  15. Sukhodolets, V.V., Regulatory Selection and an Alternative to the Neutral Theory, Genetika (Moscow), 1995, vol. 31, no. 12, pp. 1589-1597.

    Google Scholar 

  16. Darwin, C., The Origin of the Species, Moscow: Biomedgiz, 1937.

    Google Scholar 

  17. Sukhodolets, V.V., Teoriya vertikal'noi evolyutsii (The Theory of Vertical Evolution), Moscow: Geoinformmark, 2000.

    Google Scholar 

  18. Darwin, C., The Descent of Man, and Selection in Relation to Sex, Princeton, New Jersey: Princeton Univ. Press, 1981.

    Google Scholar 

  19. Schmalhausen, I.I., Stabilizing Selection and Its Place among Evolutionary Factors, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307-354.

    Google Scholar 

  20. Prout, T., The Relation between Fitness Components and Population Prediction in Drosophila: I. The Estimation of Fitness Components, Genetics, 1971, vol. 68, pp. 127-149.

    Google Scholar 

  21. Kettlewell, H.B.D., Further Selection Experiments on Industrial Melanism in the Lepidoptera, Heredity, 1956, vol. 10, pp. 287-301.

    Google Scholar 

  22. Sukhodolets, V.V., Biologicheskii progress i priroda geneticheskikh rekombinatsii (Biological Progress and the Nature of Genetic Recombination), Moscow: Bioinformservis, 1996.

    Google Scholar 

  23. Holden, J.B., Faktory evolyutsii (Evolutionary Factors), Moscow: Biomedgiz, 1935.

    Google Scholar 

  24. Wright, S., Evolution in Mendelian Populations, Genetics, 1931, vol. 16, pp. 97-159.

    Google Scholar 

  25. MacArthur, R.H. and Wilson, E.O., The Theory of Island Biogeography, Princeton, New Jersey: Princeton Univ. Press, 1967.

    Google Scholar 

  26. Pianka, E.R., On r and K Selection, Am. Nat., 1970, vol. 104, pp. 592-597.

    Google Scholar 

  27. Mueller, L.D., Evolution of Competitive Ability in Drosophila by Density-Dependent Natural Selection, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 4383-4386.

    Google Scholar 

  28. Stearns, S.C., Life-History Tactics: A Review of the Ideas, Quart. Rev. Biol., 1976, vol. 51, pp. 3-47.

    Google Scholar 

  29. Sukhodolets, V.V., The Genetic Theory of Adaptive Evolution, Modern Problems of Radiobiology, Radioecology and Evolution: Proc. Int. Conf. Dedicated to the Cente-nary of the Birth of N.W. Timofeeff-Ressovsky (Dubna, September 6-9, 2000), Korogodin, V.I., Ed., Dubna: JINR, 2001, pp. 374-379.

    Google Scholar 

  30. Ostfeld, R.S., Canham, C.D., and Pugh, S.R., Intrinsic Density-Dependent Regulation of Vole Populations, Nature, 1993, vol. 366, pp. 259-261.

    Google Scholar 

  31. Leirs, H., Stenseth, N.C., Nuchols, J.D., et al., Stochastic Seasonality and Nonlinear Density-Dependent Factors Regulate Population Size in an African Rodent, Nature, 1997, vol. 389, pp. 176-180.

    Google Scholar 

  32. Holliday, R., Food, Reproduction and Longevity: Is the Extended Life Span of Calorie-Restricted Animals an Evolutionary Adaptation?, Bioessays, 1989, vol. 10, pp. 125-127.

    Google Scholar 

  33. Bush, G.L., Sympatric Speciation in Animals: New Wine in Old Bottles, Trends Ecol. Evol., 1994, vol. 9, pp. 285-288.

    Google Scholar 

  34. Schneider, C.J., Natural Selection and Speciation, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 23, pp. 12 398-12 399

    Google Scholar 

  35. Barton, N.H. and Hewitt, G.M., Adaptation, Speciation and Hybrid Zones, Nature, 1989, vol. 341, pp. 497-503.

    Google Scholar 

  36. Vorontsov, N.N., The Synthetic Theory of Evolution: Its Basis, Major Postulates, and Unsolved Problems, Zh. Vses. Khim. O-va im. D.I. Mendeleeva, 1980, pp. 295-314.

  37. Guo, P.Z., Mueller, L.D., and Ayala, F.J., Evolution of Behavior by Density-Dependent Natural Selection, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 10 905-10 906.

    Google Scholar 

  38. Velkov, V.V., How Environmental Factors Regulate Mutagenesis and Gene Transfer in Microorganisms, J. Biosci., 1999, vol. 24, pp. 529-559.

    Google Scholar 

  39. Zambrano, M.M., Siegele, D.A., Almiron, M., et al., Microbial Competition: Escherichia coli Mutants That Take over Stationary Phase Cultures, Science, 1993, vol. 259, pp. 1757-1760.

    Google Scholar 

  40. Zambrano, M.M. and Kolter, R., GASPing for Life in Stationary Phase, Cell (Cambridge, Mass.), 1996, vol. 86, pp. 181-184.

    Google Scholar 

  41. Karpechenko, G.D., Polyploid Hybrids Raphanus sativus L. +Brassica oleracea L. (To the Problem of Experimental Speciation), in Klassiki sovetskoi genetiki (Classics of Soviet Genetics), Leningrad: Nauka, 1968, pp. 461-511.

    Google Scholar 

  42. Zuev, V.V., Superspecific Taxon as a Temporally Functioning System, Usp. Sovrem. Biol., 1998, vol. 118, no. 6, pp. 679-686.

    Google Scholar 

  43. Spring, J., Vertebrate Evolution by Interspecific Hybridization: Are We Polyploid?, FEBS Lett., 1997, vol. 400, pp. 2-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhodolets, V.V. Population Waves as a Condition for Increasing Ecological Stability of Organisms in the Process of Vertical Evolution. Russian Journal of Genetics 38, 735–744 (2002). https://doi.org/10.1023/A:1016327302191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016327302191

Keywords

Navigation