Skip to main content
Log in

Asymptotic Distribution of Eigenvalues for a Class of Second-Order Elliptic Operators with Irregular Coefficients in R d

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let A=A 0+v(x) where A 0 is a second-order uniformly elliptic self-adjoint operator in R d and v is a real valued polynomially growing potential. Assuming that v and the coefficients of A 0 are Hölder continuous, we study the asymptotic behaviour of the counting function N(A,λ) (λ→∞) with the remainder estimates depending on the regularity hypotheses. Our strongest regularity hypotheses involve Lipschitz continuity and give the remainder estimate N(A,λ)O({λ}−μ), where μ may take an arbitrary value strictly smaller than the best possible value known in the smooth case. In particular, our results are obtained without any hypothesis on critical points of the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman, M. and Solomyak, M.: Asymptotic behaviour of spectrum of differential equations, J. Soviet. Math. 12 (1979), 247–282.

    Google Scholar 

  2. Boimatov, K.: Spectral asymptotics of pseudodifferential operators, Soviet Math. Dokl. 42(2) (1990), 196–200.

    Google Scholar 

  3. Buzano, E.: Some remarks on the Weyl asymptotics by the approximate spectral projection method, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2000), 775–792.

    Google Scholar 

  4. Dencker, N.: The Weyl calculus with locally temperate metrics and weights, Ark. Mat. 24 (1986), 59–79.

    Google Scholar 

  5. Edmunds, D. E. and Evans, W. D.: On the distribution of eigenvalues of Schrödinger operators, Arch. Rational Mech. Anal. 89 (1985), 135–167.

    Google Scholar 

  6. Edmunds, D. E. and Evans, W. D.: Spectral Theory and Differential Operators, Oxford Math. Monogr., Oxford, 1989.

    Google Scholar 

  7. Faris, W. G.: Self-adjoint Operators, Lecture Notes in Math. 433, Springer-Verlag, New York, 1975.

    Google Scholar 

  8. Feigin, V. I.: The asymptotic distribution of the eigenvalues of pseudodifferential operators in R n, Math. USSR-Sb. 28 (1976), 533–552.

    Google Scholar 

  9. Feigin, V. I.: Sharp estimates of the remainder in the spectral asymptotics for pseudodifferential operators in R n, Functional Anal. Appl. 16 (1982), 88–89.

    Google Scholar 

  10. Fleckinger, J. and Lapidus, M.: Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights, Arch. Rational Mech. Anal. 98 (1987), 329–356.

    Google Scholar 

  11. Fleckinger, J. and Lapidus, M.: Schrödinger operators with indefinite weight functions: asymptotics of eigenvalues with remainder estimates, Differential Integral Equations 7 (1994), 1389–1418.

    Google Scholar 

  12. Guillemin, V. and Sternberg, S.: Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math. 101 (1979), 915–955.

    Google Scholar 

  13. Helffer, B.: Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque 112 (1984).

  14. Helffer, B. and Robert, D.: Propriétés asymptotiques du spectre d'opérateurs pseudodifférentiels sur R n, Comm. Partial Differential Equations 7 (1982), 795–881.

    Google Scholar 

  15. Hörmander, L.: On the asymptotic distribution of the pseudodifferential operators in R n, Ark. Mat. 17 (1979), 297–313.

    Google Scholar 

  16. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vols 1–4, Springer-Verlag, New York, 1983, 1985.

    Google Scholar 

  17. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  18. Ivrii, V.: Sharp spectral asymptotics for operators with irregular coefficients, Internat. Math. Res. Notices (2000), 1155–1166.

  19. Kumano-Go, H.: Pseudodifferential Operators, MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  20. Kumano-Go, H. and Nagase, M.: Pseudodifferential operators with non-regular symbols and applications, Funkcial. Ekvac. 21 (1978), 151–192.

    Google Scholar 

  21. Levendorskii, S. Z.: Asymptotic Distribution of Eigenvalues of Differential Operators, Math. Appl., Kluwer Acad. Publ., Dordrecht, 1990.

    Google Scholar 

  22. Métivier, G.: Valeurs propres des problè mes aux limites irréguliers, Bull. Soc. Math. France Mem. 51–52 (1977), 125–219.

    Google Scholar 

  23. Miyazaki, Y.: A sharp asymptotic remainder estimate for the eigenvalues of operators associated with strongly elliptic sesquilinear forms, Japan. J. Math. 15 (1989), 65–97.

    Google Scholar 

  24. Miyazaki, Y.: The eigenvalue distribution of elliptic operators with Hölder continuous coefficients, Osaka J. Math. 28 (1991), 935–973; Part 2, Osaka J. Math. 30 (1993), 267–302.

    Google Scholar 

  25. Mohamed, A.: Comportement asymptotique avec estimation du reste, des valeurs propres d'une classe d'opérateurs pseudo-différentiels sur R n, Math. Nachr. 140 (1989), 127–186.

    Google Scholar 

  26. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, vols I-IV, Academic Press, New York, 1972, 1975, 1979.

    Google Scholar 

  27. Robert, D.: Propriétés spectrales d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations 3 (1978), 755–826.

    Google Scholar 

  28. Rozenblyum, G. V.: Asymptotics of the eigenvalues of the Schrödinger operator, Math. USSRSb. 22 (1974), 349–371.

    Google Scholar 

  29. Shubin, M. A. and Tulovskii, V. A.: On the asymptotic distribution of eigenvalues of pseudodifferential operators in R n, Math. USSR-Sb. 21 (1973), 565–573.

    Google Scholar 

  30. Tamura, H.: Asymptotic formula with remainder estimates for eigenvalues of Schrödinger operators, Comm. Partial Differential Equations 7 (1982), 1–54.

    Google Scholar 

  31. Tamura, H.: Asymptotic formula with sharp remainder estimates for eigenvalues of elliptic operators of second order, Duke Math. J. 49 (1982), 87–119.

    Google Scholar 

  32. Zielinski, L.: Asymptotic behaviour of eigenvalues of differential operators with irregular coefficients on a compact manifold, C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 563–568.

    Google Scholar 

  33. Zielinski, L.: Asymptotic distribution of eigenvalues for elliptic boundary value problems, Asymptotic Anal. 16 (1998), 181–201.

    Google Scholar 

  34. Zielinski, L.: Asymptotic distribution of eigenvalues of some elliptic operators with intermediate remainder estimates, Asymptotic Anal. 17 (1998), 93–120.

    Google Scholar 

  35. Zielinski, L.: Sharp spectral asymptotics and Weyl formula for elliptic operators with nonsmooth coefficients, Math. Phys. Anal. Geom. 2 (1999), 291–321; Part 2, Colloq. Math. 92 (2002), 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielinski, L. Asymptotic Distribution of Eigenvalues for a Class of Second-Order Elliptic Operators with Irregular Coefficients in R d . Mathematical Physics, Analysis and Geometry 5, 145–182 (2002). https://doi.org/10.1023/A:1016286227961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016286227961

Navigation