Skip to main content
Log in

Ultrafine α-Al2O3. Explosive Method of Synthesis and Properties

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

An explosive method for producing ultrafine α-Al2O3 is developed and optimal synthesis parameters are determined. Particles of ultrafine α-Al2O3 have a spherical shape and are separated from one another. The size distribution is log-normal (number-averaged size 70 nm and variance 1.9). Special features of phase transitions in ultrafine aluminum oxide under shock-wave action are studied. Results of x-ray phase analysis suggest stabilization of the new high-pressure phase δ′-Al2O3 with a face-centered cubic lattice with a parameter a = 8.53 Å Key words: metastability, corundum, shock-wave synthesis, surface, modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. D. Morokhov, L. I. Trusov, and V. N. Lapovok, Physical Phenomena in Highly Disperse Media [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  2. Yu. A. Kotov and O. M. Samatov, “Properties of aluminum oxide powders produced by pulsed wire heating," Poverkhnost', Ser. Fiz. Khim. Mekh., No. 10, 1190–94 (1994).

  3. M. Ya. Gen and A. V. Miller, “Levitation method for producing ultrafine powders of metals," Poverkhnost', Ser. Fiz. Khim. Mekh., No. 2, 150–154 (1983).

  4. N. V. Alekseev, I. L. Balikhin, et al., “Formation of ultrafine powder of aluminum oxide in a limited air plasma jet," Fiz. Khim. Obrab. Mater., Nos. 4–5, 72–78 (1994).

  5. A. N. Zolotko, Ya. I. Vovchuk, N. I. Poletaev, et al., “Synthesis of nanooxides in two-phase laminar flames," Combust. Expl. Shock Waves, 32, No. 3, 262–269 (1996).

    Google Scholar 

  6. A. G. Beloshapko, A. A. Bukaemskii, and A. M. Staver, “Formation of ultradisperse compounds upon shockwave loading of porous aluminum. Study of particles obtained," Combust. Expl. Shock Waves, 26, No. 4, 457–460 (1990).

    Google Scholar 

  7. A. A. Bukaemskii, L. S. Tarasova, and E. N. Fedorova, “Special features of phase composition and stability of ultrafine Al2O3 produced by explosive synthesis," Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 5, 60–63 (2000).

  8. F. B. Vurzel', V. A. Khmel'nik, V. F. Nazarov, and G. V. Kosoruchkin, “On production of gas-thermal corundum coatings," Fiz. Khim. Obrab. Mater., No. 3, 86–92 (1988).

    Google Scholar 

  9. E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  10. G. R. Karagedov and N. Z. Lyakhov, “Preparation and sintering of nanosized α-Al2O3 powder," Nanostruct. Mater., 11, No. 5, 559–572 (1999).

    Google Scholar 

  11. R. Prummer, Explosivverdichtung Pulvriger Substanzen, BRD, Springer Verlag (1987).

  12. R. W. Heckel and J. L. Youngblood, “X-ray line broadening study of explosively shocked MgO and α-Al2O3 powders," J. Amer. Ceram. Soc., 51, No. 7, 398–401 (1968).

    Google Scholar 

  13. A. A. Bukaemskii, A. G. Beloshapko, and A. P. Puzyr', “Physicochemical properties of Al2O3 powder produced by explosive synthesis," Combust. Expl. Shock Waves, 36, No. 5, 660–666 (2000).

    Google Scholar 

  14. A. A. Bukaemskii, “Production of new ultradisperse materials and investigation of their properties," Candidate's Dissertation in Phys.-Math. Sci., Krasnoyarsk (1995).

  15. L. V. Al'tshuler, “Application of shock waves to high-pressure physics," Usp. Fiz. Nauk, 85, No. 2, 197–258 (1965).

    Google Scholar 

  16. A. A. Deribas, Physics of Hardening and Explosive Welding [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  17. N. A. Toropov, V. P. Berzakovskii, V. V. Lapin, and N. N. Kurtseva, Phase Diagrams of Silicate Systems. Handbook [in Russian], Issue 2, Nauka, Leningrad (1970), pp. 18–34.

    Google Scholar 

  18. B. C. Lippens and J. J. Steggerda, “Active aluminum oxide," in: B. G. Linsen et al. (eds.), Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press, London-New York (1970).

    Google Scholar 

  19. A. N. Tsvigunov, V. G. Khotin, et al., “Explosive detonation synthesis of a new modification of aluminum oxide from gibbsite," Steklo Keram., No. 12, 16–20 (1998).

    Google Scholar 

  20. O. A. Kirichenko, V. A. Ushakov, et al., “Phase transformations and mass transfer in mechanically activated low-temperature aluminum oxide," Izv. Ross. Akad. Nauk, Neorg. Mater., 35, No. 3, 333–341 (1999).

    Google Scholar 

  21. H. P. Rooksby, “The preparation of crystalline α-alumina," J. Appl. Chem., No. 8, 44–49 (1958).

    Google Scholar 

  22. M. M. Serov, O. N. Egorov, G. E. Val'yano, et al., “Oxide fibers produced by melt quenching," Fiz. Khim. Obrab. Mater., No. 2, 129–131 (1994).

    Google Scholar 

  23. B. G. Adamenko, P. O. Pashkov, and L. N. Tambovtseva, “Effect of shock-wave treatment on phase transformations in aluminum oxide," Poroshk. Metall., No. 10, 93–97 (1978).

    Google Scholar 

  24. A. A. Bukaemskii, A. P. Puzyr', L. S. Tarasova, and E. N. Fedorova, “Crushing of a material and phase transitions in aluminum oxide under shock-wave action," Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 2 (2001).

  25. L. I. Mirkin, X-Ray Analysis. Assignment of X-ray Photographs, Reference Manual [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  26. R. Collongues, La Non-Stoechiométrie, Masson, Paris (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukaemskii, A.A., Avramenko, S.S. & Tarasova, L.S. Ultrafine α-Al2O3. Explosive Method of Synthesis and Properties. Combustion, Explosion, and Shock Waves 38, 478–483 (2002). https://doi.org/10.1023/A:1016275602777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016275602777

Keywords

Navigation