Environmental Fluid Mechanics

, Volume 2, Issue 1–2, pp 95–114 | Cite as

Integration of Flow and Chemical Sensing for Guidance of Autonomous Marine Robots in Turbulent Flows

  • Frank W. Grasso
  • Jelle Atema

Abstract

We explored the utility of odor-gated rheotaxis (OGR) with a biomimetic robot. OGR is a widely accepted biological plume-tracing strategy that uses mean flow and chemical detection for guidance. In experiments which contrasted the `classic' single-sensor formulation of the strategy against one which used two sensors and against another which combined the use of two sensors and memory of past stimulation patterns we quantified the relative advantages of each. The use of two, spatially separated, chemical sensors confers a significant advantage and still greater performance is obtained with rudimentary memory. The performance of the American lobster under the same turbulent dispersal regime leads us to conclude that significantly more effective plume tracing strategies remain to be discovered.

autonomous behavior chemo-orientation lobster plume tracing robot turbulent dispersal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grasso, F.W.: 2001, Invertebrate-inspired sensory-motor systems and autonomous, olfactory-guided exploration, Biol. Bull. 200, 160–168.Google Scholar
  2. 2.
    Kennedy, J.S.: 1986, Some current issues in orientation to odour sources In: T.L. Payne, M.C. Birch, and C.E.J. Kennedy (eds.), Mechanisms in Insect Olfaction, pp. 11–25, Clarendon Press, Oxford.Google Scholar
  3. 3.
    Moore, P.A. and Atema, J.: 1991, Spatial information in the three-dimensional fine structure of an aquatic plume, Biol. Bull. 181, 408–418.Google Scholar
  4. 4.
    Moore, P.A., Scholz, N. and Atema, J.: 1991, Chemical orientation of lobsters, Homarus americanus, in turbulent odor plumes, J. Chem. Ecol. 17, 1293–1307.Google Scholar
  5. 5.
    Weissburg, M.: 2000, The fluid dynamical context of chemosensory behavior, Biol. Bull. 198, 188–202.Google Scholar
  6. 6.
    Willis, M.A.: 1998, Variability in odor-modulated flight by moths, J. Compar. Physiol. A 182, 191–202.Google Scholar
  7. 7.
    Zimmer-Faust, R.K., Finelli, C.M., Pentcheff, N.D. and Wethey, D.S.: 1995, Odor plumes and animal navigation in turbulent water flow: A field study, Biol. Bull. 188, 111–116.Google Scholar
  8. 8.
    Grasso, F.W., Dale, J.H., Consi, T.R., Mountain, D.C. and Atema, J.: 1997, Effectiveness of continuous bilateral sampling for robot chemotaxis in a turbulent odor plume: Implications for lobster chemo-orientation, Biol. Bull. 193, 215–216.Google Scholar
  9. 9.
    Grasso, F.W., Dale, J.H., Consi, T.R., Mountain, D.C. and Atema, J.: 1997, Behavior of purely chemotactic robot lobster reveals different odor dispersal patterns in the jet region and the patch field of a turbulent plume, Biol. Bull. 191, 312–313.Google Scholar
  10. 10.
    Consi, T.R., Grasso, F., Mountain, D. and Atema, J.: 1995, Explorations of turbulent odor plumes with an autonomous underwater robot, Biol. Bull. 189, 231–232.Google Scholar
  11. 11.
    Grasso, F.W., Consi, T.R., Mountain, C.D. and Atema, J.: 1999, Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges, Robotics Autonom. Syst. 807, 1–17.Google Scholar
  12. 12.
    Fraenkel, G.S. and Gunn, D.L.: 1961, The Orientation of Animals: Kineses, Taxes and Compass Reactions, Dover Publications, New York.Google Scholar
  13. 13.
    Monismith, S.G., Koseff, J.R., Thompson, J.K., O'Riordan, C. and Nepf, H.: 1990, A study of model bivalve siphonal currents, Limnol. Oceanogr. 35, 680–696.Google Scholar
  14. 14.
    Mafra-Neto A. and Carde, R.T.: 1994, Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths, Nature 369, 142–144.Google Scholar
  15. 15.
    Murlis, J., Elkinton, J.S. and Carde, R.T.: 1992, Odor plumes and how insects use them, Annu. Rev. Entomol. 37, 505–532.Google Scholar
  16. 16.
    Weissburg, M.J. and Zimmer-Faust, R.K.: 1994, Odor plumes and how blue crabs use them in finding prey, J. Exp. Biol. 197, 349–375.Google Scholar
  17. 17.
    Guenther, C.M., Miller, H.A., Basil, J.A. and Atema, J.: 1996, Orientation behavior of the lobster: Responses to directional chemical and hydrodynamic stimulation of the antennules, Biol. Bull. 191, 310–311.Google Scholar
  18. 18.
    Beglane, P.F., Grasso, F.W., Basil, J.A. and Atema, J.: 1997, Far field chemo-orientation in the American lobster, Homarus americanus: Effects of unilateral ablation and lesioning of the lateral antennule, Biol. Bull. 193, 214–215.Google Scholar
  19. 19.
    Mjos, K., Grasso, F. and Atema, J.: 1999, Antennule use by the American lobster, Homarus americanus, during chemo-orientation in three turbulent odor plumes, Biol. Bull. 197, 249–250.Google Scholar
  20. 20.
    Reeder, P.B. and Ache, B.W.: 1980, Chemotaxis in the Florida spiny lobster, Panulirus argus, Anim. Behav. 28, 831–839.Google Scholar
  21. 21.
    Devine, D.V. and Atema, J.: 1982, Function of chemoreceptor organs in spatial orientation of the lobster, Homarus americanus: Differences and overlap, Biol. Bull. 163, 144–153.Google Scholar
  22. 22.
    Grasso, F.W., Basil, J.A. and Atema, J.: 1998, Toward the convergence: Robot and lobster perspectives of tracking odors to their source in the turbulent marine environment, presented at Proceedings of the 1998 IEEE, Gaithersburg, MD.Google Scholar
  23. 23.
    Atema, J.: 1985, Chemoreception in the sea: Adaptations of chemoreceptors and behavior to aquatic stimulus conditions, presented at Physiological Adaptation of Marine Mammals: Proceedings of Soc. Exp. Bio. Symp.Google Scholar
  24. 24.
    Carr, W.E.S.: 1987, The molecular nature of chemical stimuli in the aquatic environment. In: J. Atema (ed) Sensory Biology of Aquatic Animals, pp. 3–27, Springer-Verlag, New York.Google Scholar
  25. 25.
    Grasso, F., Consi, T.R., Mountain, D.C. and Atema, J.: 1999, Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges J. Robot. Autonom. Syst. 807, 1–17.Google Scholar
  26. 26.
    Webster, D.R.: 2001, On the usefulness of bilateral comparison to tracking turbulent chemical odor plumes, Limnol. Oceanogr. 45, 1048–1053.Google Scholar
  27. 27.
    Dale, J.: 1997, Chemosensory search behavior in the starfish Asterias forbesii, Biol. Bull. 193, 210–212.Google Scholar
  28. 28.
    Dale, J.: 2000, Chemosensory search behavior in the starfish Asterias forbesi. In: Biology, p. 124, Boston University, Woods Hole.Google Scholar
  29. 29.
    Derby, C.D. and Atema, J.: 1981, Selective improvements in responses to prey odors by the lobster Homarus americanus following feeding experience, J. Chem. Ecol. 7, 1073–1080.Google Scholar
  30. 30.
    Atema, J.: 1996, Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors, Biol. Bull. 191, 129–138.Google Scholar
  31. 31.
    Dittmer, K., Grasso, F.W. and Atema, J.: 1995, Effects of varying plume turbulence on temporal concentration signals available to orienting lobsters, Biol. Bull. 189, 232–233.Google Scholar
  32. 32.
    Dittmer, K., Grasso, F. and Atema, J.: 1996, Obstacles to flow produce distinctive patterns of odor dispersal on a scale that could be detected by marine animals, Biol. Bull. 191, 313–314.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Frank W. Grasso
    • 1
    • 2
  • Jelle Atema
    • 1
  1. 1.Marine Biological LaboratoryBoston University Marine ProgramWoods HoleU.S.A
  2. 2.Department of PsychologyBrooklyn College, CUNYBrooklynU.S.A

Personalised recommendations