Skip to main content
Log in

Regional Drug Delivery I: Permeability Characteristics of the Rat 6-Day-Old Air Pouch Model of Inflammation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the permeability characteristics of the rat air pouch model of inflammation using permeability extremes within which the NSAIDs S[ + ] ibuprofen, piroxicam and diclofenac could be evaluated.

Methods. Permeability was calculated using concentration data obtained following intrapouch and intravenous administration of [3H]-water, [14C]-urea, [14C]-inulin and [125I]-albumin and compared to similar data obtained for the three NSAIDs.

Results. Similar permeability values (5–6.5 ml hr−1) were obtained for the three NSAIDS which fell between the permeability extremes of the molecular weight markers [3H]-water (9.7 ml hr−1), [14C]-urea (6.8 ml hr−1), [14C]-inulin (1.0 ml hr−1) and [125I]-albumin (0.6 ml hr−1). Coadministration of equipotent anti-inflammatory doses of the NSAIDs did not affect local blood flow to the air pouch (as assessed by urea kinetics) but did reduced vascular permeability (as assessed by albumin flux into the pouch).

Conclusions. Comparison of the NSAIDs with the permeabilities of the molecular weight markers indicates that a perfusion rate limitation probably exists. Systemic absorption is complete over the first two hours following intrapouch administration of the NSAIDs, therefore albumin flux into the pouch is insufficient to materially affect the permeability of the NSAIDs. However, subsequently (post 5hr) albumin concentration in the pouch rises sufficiently to lower the effective flux of the NSAIDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. W. Martin, A. J. Stevens, B. S. Brennan, D. E. Davies, M. Rowland and J. B. Houston. The 6-day-old rat air pouch model of inflammation: Characterisation of the inflammatory response to carrageenan. J. Pharmacol. Toxicol. Meth. 32: 139–149 (1994).

    Google Scholar 

  2. S. W. Martin, A. J. Stevens, B. S. Brennan, M. Rowland and J. B. Houston. Pharmacodynamic comparison of regional drug delivery for non-steroidal anti-inflammatory drugs, using the air pouch model of inflammation. J. Pharm. Pharmac. 47:458–461 (1995)

    Google Scholar 

  3. A. J. Stevens, S. W. Martin, B. S. Brennan, M. Rowland and J. B. Houston. Experimental determination of drug targeting index for S[+]ibuprofen using the rat air pouch model of inflammation. J.Drug Targeting. 2: 333–340 (1994).

    Google Scholar 

  4. A. D. Sedgwick, Y. M. Sin, A. R. Mackay, A. Al-Duaij and D. A. Willoughby. Studies into the mode of action of non-steroidal anti-inflammatory drugs using a model of facsimile synovium. J. Pharm. Pharmacol. 36: 171–174 (1984).

    Google Scholar 

  5. A. J. Stevens, S. W. Martin, B. S. Brennan, A. McLachlan, L. A. Gifford, M. Rowland and J. B. Houston. Regional Drug Delivery II: Relationship between drug targeting index and pharmacokinetic parameters for three non-steroidal anti-inflammatory drugs using the rat air pouch model of inflammation. Pharm. Res. 12:1987–1996 (1995).

    Google Scholar 

  6. K. C. Yeh, K. L. Remphrey and J. S. Barret. A numerical deconvolution program, Pharm. Res. 7:S-244 (1990).

    Google Scholar 

  7. B. Davis and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res. 10: 1093–1095 (1993).

    Google Scholar 

  8. A. Boddy, L. Aarons and K. Petrak. Efficiency of drug targeting: Steady-state considerations using a three-compartmental model. Pharm. Res. 6: 367–372 (1989).

    Google Scholar 

  9. C. A. Hunt, R. D. MacGregor and R. A. Siegel. Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations. Pharm. Res. 3: 333–344 (1986).

    Google Scholar 

  10. S. Øie and J-H. Huang. Influence of administration route on drug delivery to a target organ. J. Pharm. Sci. 70: 1344–1347 (1981).

    Google Scholar 

  11. P. Hambleton and P. Millar. Studies on carrageenin air pouch inflammation in the rat air pouch. Br. J. Exp. Pathol. 70: 425–433 (1989).

    Google Scholar 

  12. T. Takagi, M. J. Forrest and P. M. Brooks. A pharmacological and histological examination of the microcirculation of the rat subcutaneous air-pouch: microcirculation of the rat air-pouch. Pathol. 19: 294–298 (1987).

    Google Scholar 

  13. K. S. Pang, F. Barker III, A. J. Schwab and C. A. Goresky. [14C]-urea and[58Co]-EDTA as reference indicators in hepatic multiple indicator dilution studies. Am. J. Physiol. 22: G32–G40 (1993).

    Google Scholar 

  14. R. E. Parker, R. J. Roselli, F. R. Haselton and T. R. Harris. Effect of perfusate haematocrit on urea permeability-surface area in isolated lung. J. Appl. Physiol. 61: 1383–1387 (1986).

    Google Scholar 

  15. D. J. Bowsher, M. J. Avram, M. C. Frederiksen, A. Asada and A. J. Atkinson. Urea distribution kinetics analyzed by simultaneous injection of urea and inulin; demonstration that transcapillary exchange is rate limiting. J. Pharmacol. Exp. Ther. 230: 269–274 (1984).

    Google Scholar 

  16. R. L. Dedrick, M. F. Flessner, J. M. Collins and J. S. Schultz. Is the peritoneum a membrane? ASAIO. J. 5: 1–8 (1982).

    Google Scholar 

  17. R. A. Gerrick and F. P. Chinard. Permeability of dog erythrocytes to [14C]-urea. Microvasc. Res. 20: 88–91 (1980).

    Google Scholar 

  18. J. C. W. Edwards, A. D. Sedgwick and D. A. Willoughby. The formation of a structure with the features of synovial lining by the subcutaneous injection of air: an in vivo tissue culture system. J. Pathol. 134: 147–156 (1981).

    Google Scholar 

  19. M. Isaji, Y. Momose and J. Naito. Enhancement of inflammatory reactions in a non-immunological air pouch model in rats. Br. J. Exp. Pathol. 70: 705–716 (1989).

    Google Scholar 

  20. D. R. Bell, P. D. Watson and E. M. Renkin. Exclusion of plasma proteins in interstitium from the dog hind paw. Am. J. Physiol. 239: H532–H538 (1980).

    Google Scholar 

  21. G. Grotte. Passage of dextran molecules across the blood-lymph barrier. Acta. Chir.Scand. Suppl. 211: 1–84 (1956).

    Google Scholar 

  22. H. Wiig, M. DeCarlo, L. Sibley and E. M. Renkin. Interstitial exclusion of albumin in rat tissues by a continuous infusion method. Am. J. Physiol. 236 4(2): H1222–H1233 (1992).

    Google Scholar 

  23. J. V. Hurley. Acute Inflammation, Churchill Livingstone, Edinburgh, 1972, pp 7–14, Changes in vascular calibre and flow.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S.W., Stevens, A.J., Brennan, B.S. et al. Regional Drug Delivery I: Permeability Characteristics of the Rat 6-Day-Old Air Pouch Model of Inflammation. Pharm Res 12, 1980–1986 (1995). https://doi.org/10.1023/A:1016260426830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016260426830

Navigation