Skip to main content
Log in

A New Method for Estimating Dermal Absorption from Chemical Exposure: 2. Effect of Molecular Weight and Octanol-Water Partitioning

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A new method for estimating dermal absorption including the effects of exposure time and chemistry is described generally in Part 1 of this series. This method accounts for the larger absorption rates during the initial exposure period as well as the hydrophilic barrier which the viable epidermis presents to lipophilic chemicals. A key parameter in this procedure, the ratio of the stratum corneum and epidermis permeabilities (B) depends on molecular weight and octanol-water partitioning. Several approaches for approximating B and its affect on the dermal absorption prediction are discussed here. Generally, the parameter B is only important for highly lipophilic chemicals which also have relatively small molecular weights. When B is important, the recommended prediction for B is based on the Potts and Guy correlation for human stratum corneum permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Cleek and A. L. Bunge. A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm. Res., 10:497–506 (1993).

    Google Scholar 

  2. J. A. Barrie, J. D. Levine, A. S. Michaels, and P. Wong. Diffusion and solution of gases in composite rubber membranes. Trans. Faraday Soc. 59:869–878 (1963).

    Google Scholar 

  3. R. A. Siegel. Algebraic, differential, and integral relations for membranes in series and other multilaminar media: Permeabilities, solute consumption, lag times, and mean first passage times. J. Phys. Chem. 95:2556–2565 (1991).

    Google Scholar 

  4. R. O. Potts and R. H. Guy. Predicting skin permeability. Pharm. Res. 9:663–669 (1992).

    Google Scholar 

  5. R. J. Scheuplein. Molecular structure and diffusional processes across intact skin. Final report to the US Army Chemical R&D Laboratories, Edgewood Arsenal, Maryland, Contract DA 18-108-AMC-726(A) (1967).

  6. R. J. Scheuplein, I. H. Blank, G. J. Brauner, and D. J. MacFarlane. Percutaneous absorption of steroids. J. Invest. Dermatol. 52:63–70 (1969).

    Google Scholar 

  7. M. S. Roberts, R. A. Anderson, D. E. Moore, and J. Swarbick. The distribution of nonelectrolytes between human stratum corneum and water. Aust. J. Pharm. Sci. 6:77–82 (1977).

    Google Scholar 

  8. R. J. Scheuplein and I. H. Blank. Permeability of the skin. Physiol. Reviews, 51:702–747 (1971).

    Google Scholar 

  9. K. Tojo and A. R. C. Lee. Penetration and bioconversion of drugs in the skin. J. Chem. Engr. Japan, 24:297–301 (1991).

    Google Scholar 

  10. R. H. Guy and J. Hadgraft. The prediction of plasma levels of drugs following transdermal application. J. Cont. Rel. 1:177–182 (1985).

    Google Scholar 

  11. R. H. Guy and J. Hadgraft. Pharmacokinetic interpretation of the plasma levels of clonidine following transdermal deliver. J. Pharm. Sci. 74:1016–1018 (1985).

    Google Scholar 

  12. J. Hadgraft. Absorption of materials by or through the living skin. Intl. J. Cosmetic Sci. 7:103–115 (1985).

    Google Scholar 

  13. W. R. Lieb and W. D. Stein. Biological membrane behave as non-porous polymer sheets with respect to diffusion of non-electrolytes. Nature 224:240–243 (1967).

    Google Scholar 

  14. J. M. Diamond and Y. Katz. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Memb. Biol. 17:127–154 (1974).

    Google Scholar 

  15. G. L. Flynn. Physicochemical determinants of skin absorption. In: Principles of Route-to-Route Extrapolation for Risk Assessment, Eds. T. R. Gerrity and C. J. Henry, pp. 93–127, Elsevier, New York (1990).

    Google Scholar 

  16. R. H. Guy, J. Hadgraft, H. I. Maibach. Percutaneous absorption in Man: A kinetic approach. Toxicol. Appl. Pharmacol. 78:123–129 (1985).

    Google Scholar 

  17. M. H. Cohen and D. Turnbull. Molecular transport in liquids and gases. J. Chem. Phys. 31:1164–1169 (1959).

    Google Scholar 

  18. W. R. Lieb and W. D. Stein. Implications of two different types of diffusion for biological membranes. Nature 234:219–222 (1971).

    Google Scholar 

  19. W. R. Lieb and W. D. Stein. Non-Stokesian nature of transverse diffusion within human red cell membranes. J. Memb. Biol. 92:111–119 (1986).

    Google Scholar 

  20. G. B. Kasting, R. L. Smith, and E. R. Cooper. Effect of lipid solubility and molecular size on percutaneous absorption. In: Pharmacokinetics. Eds. B. Shroot and H. Schaefer, pp. 138–153. Karger, Basel (1987).

    Google Scholar 

  21. E. L. Cussler. Diffusion. Mass Transfer in Fluid Systems. Cambridge University Press, New York (1984).

    Google Scholar 

  22. R. O. Potts and M. L. Francoeur. Lipid biophysics of water loss through the skin. Proc. Natl. Acad. Sci. 87:3871–3873 (1990).

    Google Scholar 

  23. R. O. Potts, and M. L. Francoeur. The influence of stratum corneum morphology on water permeability. J. Invest. Dermatol. 96:495–499 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunge, A.L., Cleek, R.L. A New Method for Estimating Dermal Absorption from Chemical Exposure: 2. Effect of Molecular Weight and Octanol-Water Partitioning. Pharm Res 12, 88–95 (1995). https://doi.org/10.1023/A:1016242821610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016242821610

Navigation