Skip to main content
Log in

Uptake of Fractionated 3H-Heparin by Isolated Rat Kupffer Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose and Methods. The uptake of fractionated 3H-heparin by isolated rat Kupffer cells was examined to determine the uptake mechanism.

Results. The association of fractionated 3H-heparin was concentration-dependent with a dissociation constant of 3.4 nM and a maximum association capacity of 1.3 pmol/106 cells, suggesting the involvement of a specialized mechanism. Although 2,4-dinitrophenol inhibited neither the association nor internalization of fractionated 3H-heparin, lowering the temperature from 37°C to 4°C reduced the internalization of fractionated 3H-heparin by 70% without affecting the association.

Conclusions. It is suggested that the uptake mechanism may differ from receptor-mediated endocytosis of polypeptides and be mediated by scavenger receptors, because organic anions, and several ligands of scavenger receptors, as well as several heparin analogs, inhibit the binding of fractionated 3H-heparin to Kupffer cells, while phenylarsine oxide, which is known to inhibit the receptor-mediated or absorptive endocytosis of polypeptides, inhibits neither the association nor internalization of fractionated 3H-heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. B. Jaques. Heparins-anionic polyelectrolyte drugs. Pharmacol. Rev. 31: 99–166 (1980).

    Google Scholar 

  2. M. Ito, M. Baba, A. Sato, R. Pauwels, E. De Clercq and S. Shigeta. Inhibitory effect of dextran sulphate and heparin on the replication of human immunodeficiency virus type 1 (HIV) in vitro. Antivir. Res. 7: 361–367 (1987).

    Google Scholar 

  3. J. Watanabe, K. Hori, K. Iwamoto and S. Ozeki. Disposition of fractionated 3H-heparin in rats. J. Pharmacobio-Dyn. 6: 423–432 (1983).

    Google Scholar 

  4. J. Watanabe, K. Hori and S. Ozeki. Dose-dependent disposition of fractionated 3H-heparin in rats. J. Pharmacobio-Dyn. 8: 468–476 (1985).

    Google Scholar 

  5. J. Watanabe, M. Haba, H. Muranishi and H. Yuasa. Dose-dependent uptake of radioactivity of liver parenchymal and non-parenchymal cells after intravenous administration of fractionated 3H-heparin to rats. Biol. Pharm. Bull. 16(10):1031–1034 (1993).

    Google Scholar 

  6. J. Watanabe, H. Muranishi, H. Yuasa and S. Ozeki. Macromolecule-macromolecule interaction in drug distribution. II. Effect of α-globulin on saturable uptake of fractionated 3H-heparin by rat parenchymal hepatocytes in primary culture. Chem. Pharm. Bull. 40: 3052–3055 (1992).

    Google Scholar 

  7. J. Watanabe, H. Muranishi, H. Yuasa and S. Ozeki. Uptake of fractionated 3H-heparin by rat parenchymal hepatocytes in primary culture: Effect of α-globulin, temperature, and pH. J. Pharm. Sci. 81: 513–517 (1992).

    Google Scholar 

  8. J. Watanabe, H. Muranishi and H. Yuasa. Uptake mechanism of fractionated 3H-heparin by rat parenchymal hepatocytes in primary culture: Effects of transport inhibitors on the uptake. Biol. Pharm. Bull. 16(5):497–500 (1993).

    Google Scholar 

  9. D. Fiete, V. Srivastava, O. Hindsgaul and J. U. Baenziger. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. Cell. 67: 1103–1110 (1991).

    Google Scholar 

  10. B. Smedsrod and H. Pertoft. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNacβ1, 4GlcNAcβ1,2Manα that mediates rapid clearance of lutropin. J. Leuko. Biol. 38: 213–230 (1985).

    Google Scholar 

  11. C. L. Manthey, T. Kossmann, J. B. Allen, M. L. Corcoran, M. E. Brandes and S. M. Wahl. Role of Kupffer cells in developing streptococcal cell wall granulomas. Am. J. Pathol. 140: 1205–1214 (1992).

    Google Scholar 

  12. A. C. Munthe-Kass, T. Berg, P. O. Seglen and R. Seljelid. Mass isolation and culture of rat Kupffer cells. J. Exp. Med. 141: 1–10 (1975).

    Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randoll. Protein measurement with the folin phenol reagant. J. Biol. Chem. 193: 265–275 (1951).

    CAS  PubMed  Google Scholar 

  14. K. Yamaoka, Y. Tanigawara, T. Nakagawa and T. Uno. A pharmacokinetics analysis program (MULTI) for microcomputer. J. Pharmacobio-Dyn. 4: 879–885 (1981).

    Google Scholar 

  15. D. P. Praaning-van Dalen, A. Brouwer and D. L. Knook. Clearance capacity of rat liver Kupffer, endothelial, and parenchymal cells. Gastroenterol. 81: 1036–1044 (1981).

    Google Scholar 

  16. V. P. Knutson, G. V. Ronnet and M. D. Lane. Rapid, reversible internalization of cell surface insulin receptors. J. Cell. Biol. 258: 12139–12142 (1982).

    Google Scholar 

  17. H. S. Wily and D. D. Cunningham. The endocytosis rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J. Biol. Chem. 257: 4222–4229 (1982).

    Google Scholar 

  18. T. Terasaki, S. Takakuwa, A. Saheki, S. Moritani, T. Shimura, S. Tabata and A. Tsuji. Absorptive-endocytosis of an adrenocorticotropic hormone (ACTH) analogue, ebiratide, into the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells. Pharm. Res. 9(4):529–534 (1992).

    Google Scholar 

  19. S. Ohkuma and B. Poole. Fluorescence probe measurements of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. U.S.A. 75: 3327–3331 (1978).

    Google Scholar 

  20. P. A. Knauf and A. Rothstein. Chemical modification of membranes. Effects of sulfhdryl and amino-reactive reagents on anion and cation permeability of the human red blood cell. J. Gen. Phys. 58: 190–210 (1971).

    Google Scholar 

  21. R. W. Jansen, G. Molema, T. L. Ching, R. Oosting, G. Harms, F. Moolenaar, M. J. Hardonk and D. K. F. Meijer. Hepatic endocytosis of various types of mannose-terminated albumins. J. Biol. Chem. 266: 3343 (1991).

    Google Scholar 

  22. Y. Murata, S. R. Behr and F. B. Kraemer. Regulation of macrophage lipoprotein lipase secretion by the scavenger receptor. Biochem. Biophys. Acta. 972: 17–24 (1988).

    Google Scholar 

  23. D. J. Falcone. Heparin stimulation of plasminogen activator secretion by macrophage-like cell line RAW264.7: Role of the scavenger receptor. J. Cell. Physiol. 140: 219–216 (1989).

    Google Scholar 

  24. T. Doi and T. Imanishi. The structure and functions of macrophage scavenger receptor. Experimental Medicine. 10(19): 19–26 (1992).

    Google Scholar 

  25. E. Ottand, D. P. Via, J. Frubis, H. Sinn, E. Freidrich, R. Ziegler and H. A. Dresel. Differentiation of binding sites on reconstituted hepatic scavenger receptors using oxidized low-density lipoprotein. Biochem. J. 281: 745–751 (1992).

    Google Scholar 

  26. G. Stehle, E. A. Friedrich, H. Sinn, A. Wunder, J. Harenberg, C. E. Dempfle, W. M. Borst and D. L. Heene. Hepatic uptake of modified low molecular weight heparin in rats. J. Clin. Invest. 90: 2110–2116 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, J., Haba, M. & Yuasa, H. Uptake of Fractionated 3H-Heparin by Isolated Rat Kupffer Cells. Pharm Res 12, 1092–1095 (1995). https://doi.org/10.1023/A:1016235120585

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016235120585

Navigation