Skip to main content
Log in

Distribution, Metabolism and Tumoricidal Activity of Doxorubicin Administered in Sorbitan Monostearate (Span 60) Niosomes in the Mouse

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Encapsulation of doxorubicin in niosomes was sought as a route to tumour targeting and improved tumoricidal through the alteration of doxorubicin pharmacokinetics and metabolism.

Methods. Doxorubicin niosomes (10 mg kg−l doxorubicin) prepared from sorbitan monostearate (Span 60), cholesterol and choleth-24 (a 24 oxyethylene cholesteryl ether) in the molar ratio 45:45:10 were administered intravenously to female NMRI mice bearing the MAC 15A subcutaneously implanted tumour. Plasma doxorubicin was fractionated by gel filtration and quantified by HPLC with fluorometric detection as niosome-associated doxorubicin and released doxorubicin. Tumoricidal activity of the formulation was assessed by the intravenous injection of 5 mg kg−1 and 10 mg kg−1 doxorubicin niosomes to male NMRI mice bearing a 6 day old MAC 15A tumour.

Results. At least 90% of the plasma doxorubicin was associated with the niosome fraction 4 h after dosing, and 50% was still associated after 24 h. The clearance of doxorubicin released from the niosomes was about 10 fold greater than the clearance of niosomal doxorubicin (176.5 mL h−l and 16.2 mL h−1, respectively). The area under the plasma level-time curve increased 6 fold when doxorubicin was administered in niosomes, compared to doxorubicin solution (66.0 µg.h mL−l and 10.3 µg.h mL−1, respectively). The area under the tumour level time curve was increased by over 50% by the administration of doxorubicin in niosomes when compared to the drug administered in solution (58.6 µg.h mL−l and 34.3 µg.h mL−1, respectively). There was no statistically significant difference between levels of the drug in the heart when niosomal doxorubicin or doxorubicin solution were administered. Doxorubicin metabolites, namely doxorubicinol and the aglycones doxorubicinone, doxorubicinolone and 7-deoxydoxorubicinone, were found associated with the niosomes in the plasma, possibly due to their adsorption to the vesicle surface once formed outside the niosome. Overall metabolite levels in the liver were increased when doxorubicin niosomes were administered compared to the drug in solution. A 5 mg kg−1 injection of doxorubicin niosomes produced a terminal mean tumour weight that was similar to that obtained from animals administered 10 mg kg−1 doxorubicin solution.

Conclusions. Modest tumour targeting was achieved by the delivery of doxorubicin in sorbitan monostearate niosomes, increasing the tumour to heart AUC0–24 ratio from 0.27 to 0.36 and a doubling of tumoricidal activity. The overall level of doxorubicin metabolites was also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Calabaresi and P. Chabner. Antineoplastic agents. In A. Goodman Gilman, T. W. Rall, S. A. Nies, P. Taylor, (eds), Goodman and Gilman's Pharmacological Basis of Therapeutics (8th edition), 1990, Pergamon Press: New York, pp. 1209–1263.

    Google Scholar 

  2. C. Verdun, F. Brasseur, H. Vranckx, P. Couvreur, M. Roland. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother. Pharmacol. 26: 13–18 (1990).

    Google Scholar 

  3. O. Ike, Y. Shimizu, Y. Ikada, S. Wanatabe, T. Natsume, R. Wada, S.-H. Hyon, S. Hitomi. Biodegradation and antitumour effect of adriamycin-containing poly(L-lactic acid) microspheres. Biomaterials, 12: 757–762 (1991).

    Google Scholar 

  4. E. H. Herman, A. Rahman, A. Ferrans, J. A. Vick, and P. S. Schein. Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Res. 43: 5427–5432 (1983).

    Google Scholar 

  5. A. Gabizon, R. Chisin, S. Anselem, S. Druckman, R. Cohen, D. Goren, I. Fromer, T. Peretz, A. Sulkes, and Y. Barenholz. Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer 64: 1125–1132 (1991).

    Google Scholar 

  6. U. R. Hengge, N. H. Brockmeyer, M. Baumann, G. Reiman, and M. Groos. Liposomal doxorubicin in AIDS-related Kaposi's sarcoma. Lancet 342: 497.

  7. A. Gabizon, A. Dagan, D. Goren, Y. Barenholz, and Z. Fuks. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumour activity in mice. Cancer Res. 42: 4734–4739 (1982).

    Google Scholar 

  8. A. A. Gabizon. Selective tumour localisation and improved therapeutic index of anthracyclines encapsulated in long circulating liposomes. Cancer Res. 52: 891–896 (1992).

    Google Scholar 

  9. J. W. Cowens, P. J. Creaven, W. R. Geco, D. E. Brenner, Y. Tung, M. Ostro, F. Pilkiewicz, R. Ginsberg, and N. Petrelli. Initial Clinical (phase I) trial of TLCD-99 (doxorubicin encapsulated liposomes). Cancer Res. 53: 2796–2802 (1993).

    Google Scholar 

  10. A. J. Baillie, A. T. Florence, L. R. Hume, G. T. Muirhead, and A. Rogerson. The preparation and properties of niosomes—non-ionic surfactant vesicles. J. Pharm. Pharmacol. 37: 863–868 (1985).

    Google Scholar 

  11. A. T. Florence, C. Cable, C. Cassidy, and S. B. Kaye. Nonionic surfactant vesicles as carriers of doxorubicin. In G. Gregoriadis, A. C. Allison, G. Poste, (eds.), Targeting of Drugs, Plenum Press, New York, 1990, pp 117–126.

    Google Scholar 

  12. A. Rogerson, J. Cummings, N. Willmott, and A. T. Florence. The distribution of doxorubicin in mice following administration in niosomes. J. Pharm. Pharmacol. 40: 337–342 (1988).

    Google Scholar 

  13. D. J. Kerr, A. Rogerson, G. J. Morrison, A. T. Florence, and S. B. Kaye. Antitumour activity and pharmacokinetics of niosome encapsulated adriamycin in monolayer, spheroid and xenograft. Br. J. Cancer 58: 432–436 (1988).

    Google Scholar 

  14. I. F. Uchegbu, J. A. Double, J. A. Turton, and A. T. Florence. The activity of doxorubicin niosomes against a resistant human ovarian cancer cell line. J. Pharm. Pharmacol. 45(S2): 1112 (1993).

    Google Scholar 

  15. J. A. Double and L. C. de Castro. Chemotherapy of transplantable adenocarcinomas of the colon in mice. II. Development and characterization of an ascitic line. Cancer Treat. Rep. 62: 85–90 (1978).

    Google Scholar 

  16. G. Powis. Metabolism and reactions of quinoid anticancer agents. Pharmacol. Therap. 35: 57–162 (1987).

    Google Scholar 

  17. I. F. Uchegbu, J. A. Turton, J. A. Double, and A. T. Florence. The biodistribution and pulmonary adverse effect of intraperitoneally administered doxorubicin niosomes. Biopharm. Drug Dispos. 15: 691–707.

  18. J. Cummings, J. F. B. Stuart, and K. C. Calman. Determination of adriamycin, adriamycinol and their 7-deoxyaglycones in human serum by high-performance liquid chromatography. J. Chromatogr. 311: 125–133 (1984).

    Google Scholar 

  19. J. Cummings and C. S. McArdle. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br. J. Cancer 53: 835–838 (1986).

    Google Scholar 

  20. M. Gilbaldi. Biopharmaceutics and clinical pharmacokinetics (4th edition). Lea and Febiger, Philadelphia, 1991.

    Google Scholar 

  21. P. A. J. Speth, Q. G. C. M. van Hoesel, and C. Haanen. Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokin. 15: 15–31 (1988).

    Google Scholar 

  22. A. Gabizon, R. Shiota, and D. Papahadjopoulos. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J. Nat. Cancer Inst. 81: 1484–1488 (1989).

    Google Scholar 

  23. S. Druckmann, A. Gabizon, and Y. Barenholz. Separation of liposome-associated doxorubicin in human plasma: implications for pharmacokinetic studies. Biochim. Biophys. Acta. 980: 381–384 (1989).

    Google Scholar 

  24. R. L. Thies, D. W. Cowens, P. R. Cullis, M. B. Bally, and L. D. Mayer. Method for rapid separation of liposome-associated doxorubicin from free doxorubicin in plasma. Anal. Biochem. 188: 65–71 (1990).

    Google Scholar 

  25. J. Cummings, L. Anderson, N. Willmott, and J. F. Smyth. The molecular pharmacology of doxorubicin in vivo. Eur. J. Cancer 27: 532–535 (1991).

    Google Scholar 

  26. R. Preiss, R. Sohr, B. Kittelmann, E. Müller, and D. Haase. Investigations on the dose-dependent pharmacokinetics of adriamycin and its metabolites. Int. J. Clin. Pharmacol. Therapy Toxicol. 27: 156–164 (1989).

    Google Scholar 

  27. M. N. Azmin, A. T. Florence, R. M. Handjani-Vila, J. F. B. Stuart, G. Vanlerberghe, and J. S. Whittaker. The effect of niosomes and polysorbate 80 on the metabolism and excretion of methotrexate in the mouse. J. Pharm. Pharmacol. 37: 237–242 (1985).

    Google Scholar 

  28. G. Partharasi, N. Udupa, P. Umadevi, and S. K. Pillai. Niosome encapsulation of vincristine sulphate: improved anticancer activity with reduced toxicity in mice. J. Drug Targ. 2: 173–182 (1994).

    Google Scholar 

  29. J. A. E. Balazsovits, L. D. Mayer, M. B. Bally, P. R. Cullis, M. McDonnell, R. S. Ginsberg, and R. E. Falk. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin. Cancer Chemother. Pharmacol. 23: 81–86 (1989).

    Google Scholar 

  30. J. Vaage, E. Mayhew, D. Lasic, and F. Martin. Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes. Int. J. Cancer 51: 942–948 (1992).

    Google Scholar 

  31. S. K. Huang, K.-D. Lee, K. Hong, D. S. Friend, and D. Papahadjopoulos. Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res. 52: 5135–5143 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchegbu, I.F., Double, J.A., Turton, J.A. et al. Distribution, Metabolism and Tumoricidal Activity of Doxorubicin Administered in Sorbitan Monostearate (Span 60) Niosomes in the Mouse. Pharm Res 12, 1019–1024 (1995). https://doi.org/10.1023/A:1016210515134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016210515134

Navigation