Skip to main content
Log in

Hydroxyl Groups in GeO2 Glass

  • Published:
Inorganic Materials Aims and scope

Abstract

The shape of the fundamental OH stretching band of GeO2 glass was analyzed before and after hydrostatic compression at 5.2 GPa. The results were interpreted using quantum-chemical modeling of the incorporation of OH groups and H2O molecules into the GeO2 glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Neustruev, V.B., Colour Centres in Germanosilicate Glass and Optical Fibres, J. Phys.: Condens. Matter, 1994, vol. 6, no. 6, pp. 6901–6936.

    Google Scholar 

  2. Olshansky, R. and Scherer, G.W., High GeO2 Optical Waveguides, Proc. V Eur. Conf. on Optical Communications (ECOC), Amsterdam, 1979, pp. 12.5–1–12.5–3.

  3. Devyatykh, G.G., Dianov, E.M., Karpishchev, N.S., et al., Material Dispersion and Rayleigh Scattering in Glassy GeO2, a Potential Material for Low-Loss Optical Fibers, Kvantovaya Elektron. (Moscow), 1980, vol. 7, no. 7, pp. 1563–1566.

    Google Scholar 

  4. Sakagichi, S. and Todoroki, S., Optical Properties of GeO2 Glass and Optical Fibers, Appl. Opt., 1997, vol. 36, no. 27, pp. 6809–6814.

    Google Scholar 

  5. Takahashi, H. and Sugimoto, I., A Germanium-Oxide Glass Optical Fiber Prepared by a VAD Method, J. Lightwave Technol., 1984, vol. 2, no. 5, pp. 613–616.

    Google Scholar 

  6. Kashyap, R., Photosensitive Optical Fibers: Devices and Applications, Opt. Fiber Technol., 1994, vol. 1, no. 1, pp. 17–34

    Google Scholar 

  7. Lemaire, P.J., Atkins, R.M., Mizrahi, V., and Reed, W.A., High Pressure H2 Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and Thermal Sensitivity in GeO2 Doped Optical Fibres, Electron. Lett., 1993, vol. 29, no. 13, pp. 1191–1193.

    Google Scholar 

  8. Araujo, F.M., Joanni, E., Marques, M.B., and Okhotnikov, O.G., Dynamics of Infrared Absorption Caused by Hydroxyl Groups and Its Effect on Refractive Index Evolution in Ultraviolet Exposed Hydrogen Loaded GeO2-Doped Fibers, Appl. Phys. Lett., 1998, vol. 72, no. 24, pp. 3109–3111.

    Google Scholar 

  9. Grubsky, V., Starodubov, D.S., and Feinberg, J., Effect of Molecular Water on Thermal Stability of Gratings in Hydrogen-Loaded Optical Fibers, Proc. OFC, 1999, pp. 53–55.

  10. Poumellec, B., Guenot, P., Riant, I., et al., UV Induced Densification during Bragg Grating Inscription in Ge:SiO2 Preforms, Opt. Mater., 1995, vol. 4, no. 4, pp. 441–449.

    Google Scholar 

  11. Potkay, E., Clark, H.R., Smyth, I.P., et al., Characterization of Soot from Multimode Vapor-Phase Axial Deposition (VAD) Optical Fiber Preforms, J. Lightwave Technol., 1988, vol. 6, no. 8, pp. 1338–1347.

    Google Scholar 

  12. Weeks, R.A., Magruder, R.H., and Kinser, D.L., The Effect of OH on UV Optical Absorption of Reduced GeO2 Glasses, J. Non-Cryst. Solids, 1980, vol. 42, no. 2, pp. 307–312.

    Google Scholar 

  13. Shibata, N., Kawachi, M., and Edahori, T., Optical-Loss Characteristics of High GeO2 Content Silica Glass, Trans. IECE Jpn., 1980, vol. 63, no. 12, pp. 837–841.

    Google Scholar 

  14. Margaryan, A. and Liu, W.M., Prospects of Using Germanium-Dioxide-Based Glass for Optics, Opt. Eng. (Bellingham, Wash.), 1993, vol. 32, no. 8, pp. 1995–1996.

    Google Scholar 

  15. Plotnichenko, V.G., Sokolov, V.O., and Dianov, E.M., Hydroxyl Groups in High-Purity Silica Glass, J. Non-Cryst. Solids, 2000, vol. 261, no. 1, pp. 186–194.

    Google Scholar 

  16. Plotnichenko, V.G., Sokolov, V.O., and Dianov, E.M., Hydroxyl Groups in Germanosilicate Glasses, J. Non-Cryst. Solids, 2000, vol. 278, nos. 1–3, pp. 85–98.

    Google Scholar 

  17. Stewart, J.J.P., MOPAC 93.00 Manual, Tokyo: Fujitsu, 1993.

    Google Scholar 

  18. VAMP 6.5 Reference Guide, Oxford (UK): Oxford Molecular, 1997 (http://www.oxmol.co.uk).

  19. Stewart, J.J.P., Optimization of Parameters for Semiempirical Methods: I. Method, J. Comput. Chem., 1989, vol. 10, no. 4, pp. 210–220.

    Google Scholar 

  20. Stewart, J.J.P., Optimization of Parameters for Semiempirical Methods: III. Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi, J. Comput. Chem., 1991, vol. 12, no. 5, pp. 320–341.

    Google Scholar 

  21. Galeener, F.L., Planar Rings in Vitreous Silica, J. Non-Cryst. Solids, 1982, vol. 49, no. 1, pp. 53–62.

    Google Scholar 

  22. West., J.K. and Hench, L.L., A PM3 Molecular Orbital Model of Silica Rings and Their Vibrational Spectra, J. Non-Cryst. Solids, 1994, vol. 180, no. 1, pp. 11–16.

    Google Scholar 

  23. Kaplan, I.G., Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii (Introduction to the Theory of Molecular Interactions), Moscow: Nauka, 1982, pp. 63–74.

    Google Scholar 

  24. Plotnichenko, V.G., Sokolov, V.O., Kryukova, E.B., and Dianov, E.M., Hydroxyl Groups in Phosphosilicate Glasses for Fibre Optics, J. Non-Cryst. Solids, 2000, vol. 270, no. 1, pp. 20–27.

    Google Scholar 

  25. Davis, K.M. and Tomozawa, M., An Infrared Spectroscopic Study of Water-Related Species in Silica Glasses, J. Non-Cryst. Solids, 1995, vol. 201, no. 2, pp. 177–198.

    Google Scholar 

  26. Hussin, R., Holland, D., and Dupree, R., Does Six-Coordinate Germanium Exist in Na2O–GeO2 Glasses? Oxygen-17 Nuclear Magnetic Resonance Measurements, J. Non-Cryst. Solids, 1998, vols. 232–234, no. 5, pp. 440–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotnichenko, V.G., Sokolov, V.O., Mashinskii, V.M. et al. Hydroxyl Groups in GeO2 Glass. Inorganic Materials 38, 738–745 (2002). https://doi.org/10.1023/A:1016208912810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016208912810

Keywords

Navigation