Skip to main content
Log in

Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Action potential duration (APD) shortening due to opening of sarcolemmal ATP-dependent potassium (KATP) channels has been postulated to protect the myocardium against postischemic damage by reducing Ca2+ influx. This hypothesis was assessed, assuming that increased postischemic stunning due to KATP channel inhibition with glibenclamide could be reverted by the addition of the Ca2+ channel blocker diltiazem. Percent wall thickening fraction (% WTh, conscious sheep) and APD (open-chest sheep) were obtained from the following groups: control: 12 min ischemia by anterior descending coronary artery occlusion followed by 2 h reperfusion; glibenclamide: same as control, with glibenclamide (0.4 mg/kg) infused 30 min before ischemia; diltiazem: same as control, with diltiazem (100 μg/kg) administered prior to ischemia; glibenclamide+diltiazem: both drugs infused as in glibenclamide and diltiazem groups. APD was reduced in control ischemia. Conversely, KATP-channel blockade by glibenclamide lengthened APD and increased postischemic stunning (p < 0.01 vs. control); glibenclamide+diltiazem did not shorten APD but enhanced functional recovery (p < 0.01 vs. glibenclamide). Ca2+ channel blockade improvement of increased stunning provoked by KATP channel inhibition supports the hypothesis that APD shortening due to opening of KATP channels protects against postischemic stunning by limiting Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchampach JA, Maruyama M, Cavero I, Gross GJ: Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 86: 311–319, 1992

    PubMed  Google Scholar 

  2. Auchampach JA, Cavero I, Gross GJ: Nicorandil attenuates myocardial dysfunction associated with transient ischemia by opening ATP-dependent potassium channels. J Cardiovasc Pharmac 20: 765–771, 1992

    Google Scholar 

  3. Warltier DC, Auchampach JA, Gross GJ: Relationship of severity of myocardial stunning to ATP dependent potassium channel modulation. J Cardiac Surg 8: 279–283, 1993

    Google Scholar 

  4. Auchampach JA, Maruyama M, Cavero I, Gross GJ: The new K+ channel opener aprikalim (RP 52891) reduces experimental infarct size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Ther 259: 961–967, 1991

    PubMed  Google Scholar 

  5. Gross GJ, Auchampach JA: Blockade of ATP-sensitive potassium channel prevents myocardial preconditioning in dogs. Circ Res 70: 223–233, 1992

    PubMed  Google Scholar 

  6. Bernardo NL, D'Angelo M, Okubo S, Joy A, Kukreja RC: Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol Heart Circ Physiol 276: H1323–H1330, 1999

    Google Scholar 

  7. Kersten JR, Gross GJ, Pagel PS, Warltier DC: Activation of adenosine triphosphate-regulated potassium channels. Mediation of cellular and organ protection. Anesthesiology 88: 495–513, 1998

    PubMed  Google Scholar 

  8. Vleugels A, Vereecke J, Carmeliet E: Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res 47: 501–508, 1980

    PubMed  Google Scholar 

  9. Wilde AAM, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JWT, Janse MJ: Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res 67: 835–843, 1990

    PubMed  Google Scholar 

  10. Cole WC, McPherson CD, Sontag D: ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69: 571–581, 1991

    PubMed  Google Scholar 

  11. Noma A: ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148, 1983

    PubMed  Google Scholar 

  12. Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M: Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 92: 2266–2275, 1995

    PubMed  Google Scholar 

  13. Bolli R, Marban E: Molecular and cellular mechanisms of myocardial stunning. Phys Rev 79: 609–634, 1999

    Google Scholar 

  14. Hampton TG, Amende I, Travers KE, Morgan JP: Intracellular calcium dynamics in mouse model of myocardial stunning. Am J Physiol Heart Circ Physiol 274: H1821–H1827, 1998

    Google Scholar 

  15. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E: Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80: 393–399, 1997

    PubMed  Google Scholar 

  16. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E: Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? Circ Res 66: 1268–1276, 1990

    PubMed  Google Scholar 

  17. Taylor AL, Golini P, Eckels R, Pator P, Buja M, Willerson JT: Differential enhancement of postischemic segmental systolic thickening by diltiazem. J Am Coll Cardiol 15: 737–747, 1990

    PubMed  Google Scholar 

  18. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E: Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79: 950–961, 1987

    PubMed  Google Scholar 

  19. Shine KI, Douglas AM: Low calcium reperfusion of ischemic myocardium. J Mol Cell Cardiol 15: 251–260, 1983

    PubMed  Google Scholar 

  20. Kitakaze M, Weisfeldt ML, Marban E: Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82: 920–927, 1988

    PubMed  Google Scholar 

  21. Carrozza JP, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP: Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 71: 1334–1340, 1992

    PubMed  Google Scholar 

  22. Del Valle HF, Lascano EC, Negroni JA, Crottogini AJ: Glibenclamide effects on reperfusion-induced malignant arrhythmias and left ventricular mechanical recovery from stunning in conscious sheep. Cardiovasc Res 50: 474–485, 2001

    PubMed  Google Scholar 

  23. Negroni JA, Lascano EC, del Valle HF, Crottogini AJ: ATP-sensitive potassium channels do not have a main role in mediating late preconditioning protection against arrhythmias and stunning in conscious sheep. Basic Res Cardiol 97: 55–64, 2002

    PubMed  Google Scholar 

  24. Lascano EC, Negroni JA, del Valle HF, Crottogini AJ: Left ventricular systolic and diastolic function in conscious sheep undergoing ischemic preconditioning. Cardiovasc Res 41: 77–86, 1999

    PubMed  Google Scholar 

  25. Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G: Measurement of regional myocardial blood flow with multiple coloured microspheres. Circulation 83: 974–982, 1991

    PubMed  Google Scholar 

  26. Schaper W: Coronary occlusion in mammals. In: D.A.K. Black (ed), Clinical Studies, Vol. 1: The Collateral Circulation of the Heart. Amsterdam, North-Holland, 1971, pp 19–28

    Google Scholar 

  27. Meyns BP, Nishimura Y, Jashari R, Racz R, Leunens VH, Flameng WJ: Ascending versus descending aortic balloon pumping: Organ and myocardial perfusion during ischemia. Ann Thorac Surg 70: 1264–1269, 2000

    PubMed  Google Scholar 

  28. Chien KR, Reeves JP, Buja LM, Bonte F, Parkey RW, Willerson JT: Phospholipid alterations in canine myocardium. Temporal and topographical correlations with Tc-99–PPi accumulation and an in vitro sarcolemmal Ca++ permeability defect. Circ Res 48: 711–719, 1981

    PubMed  Google Scholar 

  29. Kimura Y, Engelman RM, Rousou J, Flack J, Iyengar J, Das DK: Moderation of myocardial ischemia reperfusion injury by calcium channel and calmodulin receptor inhibition. Heart Vessels 7: 189–195, 1992

    PubMed  Google Scholar 

  30. Watts JA, Maiorano LJ, Maiorano PC: Comparison of the protective effects of verapamil, diltiazem, nifedipine, and buffer containing low calcium upon global myocardial ischemic injury. J Mol Cell Cardiol 18: 255–263, 1986

    PubMed  Google Scholar 

  31. Linz KW, Meyer R: Modulation of L-type calcium current by internal potassium in guinea pig ventricular myocytes. Cardiovasc Res 33: 110–122, 1997

    PubMed  Google Scholar 

  32. Volk T, Nguyen TH, Schultz JH, Ehmke H: Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo-and epicardial origin. J Physiol 519: 841–850, 1999

    PubMed  Google Scholar 

  33. Kaprielian R, Wickenden AD, Kassiri Z, Parker TG, Liu PP, Backx PH: Relationship between K+ channels down-regulation and [Ca2+]i in rat ventricular myocytes following myocardial infarction. J Physiol 517: 229–245, 1999

    PubMed  Google Scholar 

  34. Sato T, Sasaki N, Seharaseyon J, O'Rourke B, Marbán E: Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATP channels in ischemic cardioprotection. Circulation 101: 2418–2423, 2000

    PubMed  Google Scholar 

  35. Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC: Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: Role of nitric oxide. Am J Physiol 277: H2425–2434, 1999

    PubMed  Google Scholar 

  36. Grover GJ, Garlid KD: ATP-sensitive potassium channels: A review of their cardioprotective pharmacology. J Mol Cell Cardiol 32: 677–695, 2000

    PubMed  Google Scholar 

  37. Sargent CA, Smith MA, Dzwonczyk S, Sleph PG, Grover GJ: Effect of potassium channel blockade on the anti-ischemic actions of mechanistically diverse agents. J Pharmacol Exp Ther 259: 97–103, 1991

    PubMed  Google Scholar 

  38. Thornton JD, Thornton CS, Sterling DL, Downey JM: Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res 72: 44–49, 1993

    PubMed  Google Scholar 

  39. Schaffer SW, Tan BH, Mozaffari MS: Effect of glyburide on myocardial metabolism and function. Am J Med 79 (suppl 3B): 48–52, 1985

    Google Scholar 

  40. Du Toit EF, Opie LH: Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res 70: 960–967, 1992

    PubMed  Google Scholar 

  41. Singh BN, Opie LH: Calcium-antagonists. In: L.H Opie (ed), Drugs for the Heart. Orlando, FL, Grune & Stratton, 1984, pp 39–64

    Google Scholar 

  42. Nagao T, Matlib MA, Franklin D, Millard RW, Schwartz A: Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after brief coronary occlusion. J Mol Cell Cardiol 12: 29–43, 1980

    PubMed  Google Scholar 

  43. Matsuzaki M, Gallagher KP, Patritti J, Tajimi T, Kemper WS, White FC, Ross J Jr: Effects of a calcium-entry blocker (diltiazem) on regional myocardial flow and function during exercise in conscious dogs. Circulation 69: 801–814, 1984

    PubMed  Google Scholar 

  44. Kim MS, Akera T: O2 free radicals cause ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol Heart Circ Physiol 252: H252–H257, 1987

    Google Scholar 

  45. Krause SM, Jacobus WE, Becker LC: Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic ‘stunned’ myocardium. Circ Res 65: 526–530, 1989

    PubMed  Google Scholar 

  46. Grinwald PM: Calcium uptake during postischemic reperfusion in the isolated rat heart: Influence of extracellular sodium. J Mol Cell Cardiol 14: 359–365, 1982

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lascano, E.C., Negroni, J.A. & del Valle, H.F. Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx. Mol Cell Biochem 236, 53–61 (2002). https://doi.org/10.1023/A:1016198011919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016198011919

Navigation