Climatic Change

, Volume 54, Issue 4, pp 439–461 | Cite as

Impacts of Climate Change on the Global Forest Sector

  • John Perez-Garcia
  • Linda A. Joyce
  • A. David Mcguire
  • Xiangming Xiao

Abstract

The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, D. J.: 1993, U.S. Forests in a Global Context, General Technical Report RM-228, USDA Forest Service Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, p. 24.Google Scholar
  2. Brown, S., Sathaye, J., Cannell, M., Kauppi, P., and 13 contributing authors: 1996, ‘Management of Forests for Mitigation of Greenhouse Gas Emissions’ Ch. 24, in Watson, R. T., Zinyowera, M. C., Moss, R. H. (eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge University Press, Cambridge, pp. 773–821.Google Scholar
  3. Callaway, J., Smith, J., and Keefe, S.: 1994, The Economic Effects of Climate Change for U.S. Forests, U.S. Environmental Protection Agency, Adaptation Branch, Climate Change Division, Office of Policy, Planing and Evaluation, Washington, D.C.Google Scholar
  4. Cardellichio, P., Youn, Y., Adams, D., Joo, R., and Chmelik, J.: 1989, A Preliminary Analysis of Timber and Timber Products Production, Consumption, Trade and Prices in the Pacific Rim until 2000, CINTRAFOR Working Paper 22, College of Forest Resources, University of Washington, Seattle.Google Scholar
  5. Clein, J., Kwiatkowski, B., McGuire, A. D., Hobbie, J. E., Rastetter, E. B., Melillo, J. M., and Kicklighter, D. W.: 2000, ‘Modeling Carbon Responses of Tundra Ecosystems to Historical and Projected Climate: A Comparison of a Plot-and a Global-Scale Ecosystem Model to Identify Process-Based Uncertainties’ Global Change Biol. 6, S127–S140.Google Scholar
  6. Food and Agricultural Organization of the United Nations: 1999, FAO Yearbook of Forest Products 1993–1997, FAO, Rome.Google Scholar
  7. Intergovernmental Panel on Climate Change (IPCC): 1995, ‘Climate Change 1994’ in Houghton, J. T. et al. (eds.), Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, New York.Google Scholar
  8. Irland, L. C., Adams, D., Alig, R., Betz, C. J., Chen, C., Hutchins, M., McCarl, B. A., Skog, K., and Sohngen, B.: 2001, ‘Assessing Socioeconomic Impacts of Climate Change on U.S. Forests, Wood Product Markets and Forest Recreation’ Bioscience, 51.Google Scholar
  9. Joyce, L. A., Aber, J., McNulty, S., Dale, V., Hansen, A., Irland, L., Neilson, R., and Skog, K.: 2001, ‘Potential Consequences of Climate Variability and Change for the Forests of the United States’ Ch. 17, in National Assessment Synthesis Team (eds.), Climate Change Impacts on the United States, Cambridge University Press.Google Scholar
  10. Joyce, L. A., Mills, J., Heath, L., McGuire, A. D., Haynes, R. W., and Birdsey, R. A.: 1995, ‘Forest Sector Impacts from Changes in Forest Productivity under Climate Change’ J. Biogeogr. 22, 703–714.Google Scholar
  11. Kallio, M., Dykstra, D., and Binkley, C. (eds.): 1987, The Global Forest Sector: An Analytical Perspective, John Wiley and Sons, New York.Google Scholar
  12. Kindermann, J., Wurth, G., Kohlmaier, G. H., and Badeck, F-W.: 1996, ‘Interannual Variation of Carbon Exchange Fluxes in Terrestrial Ecosystems’ Global Biogeochem. Cycles 10, 737–755.Google Scholar
  13. Kirschbaum, M. U. F., Fischlin, A., Cannell, M. G. R., Cruz, R. V. O., Galinski, W., and Cramer, W. P.: 1996, ‘Climate Change Impacts on Forests’ in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge University Press, Cambridge, pp. 95–129.Google Scholar
  14. Laarman, J. and Sedjo, R.: 1992, Global Forests. Issues for Six Billion People, McGraw Hill, New York.Google Scholar
  15. McCarl, B. A., Burton, D. M., Adams, D. M., Alig, R. J., and Chen, C. C.: 2000, ‘Effects of Global Climate Change on the U.S. Forest Sector: Response Function from a Dynamic Resource and Market Simulator’ Clim. Res. 15, 195–205.Google Scholar
  16. McGuire, A. D., Clein, J., Melillo, J. M., Kicklighter, D. W., Meier, R. A., Vorosmarty, C. J., and Serreze. M. C.: 2000, ‘Modeling Carbon Responses of Tundra Ecosystems to Historical and Projected Climate: The Sensitivity of Pan-Arctic Carbon Storage to Temporal and Spatial Variation in Climate’ Global Change Biol. 6, S141–S159.Google Scholar
  17. McGuire, A. D., Joyce, L. A., Kicklighter, D. W., Melillo, J. M., Esser, G., and Vorosmarty, C. J.: 1993, ‘Productivity Response of Climax Temperate Forests to Elevated Temperature and Carbon Dioxide: A North American Comparison between Two Global Models’ Clim. Change 24, 287–310.Google Scholar
  18. McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore III, B., and Vorosmarty, C. J.: 1992, ‘Interactions between Carbon and Nitrogen Dynamics in Estimating Net Primary Productivity for Potential Vegetation in North America’ Global Biogeochem. Cycles 6, 101–124.Google Scholar
  19. McGuire, A. D., Melillo, J. M., Kicklighter, D. W., and Joyce, L. A.: 1995, ‘Equilibrium Responses of Soil Carbon to Climate Change: Empirical and Process-Based Estimates’ J. Biogeogr. 22, 785–796.Google Scholar
  20. McGuire, A. D., Melillo, J. M., Kicklighter, D. W., Pan, Y., Xiao, X., Helfrich, J., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1997, ‘Equilibrium Responses of Global Net Primary Production and Carbon Storage to Doubled Atmospheric Carbon Dioxide: Sensitivity to Changes in Vegetation Nitrogen Concentration’ Global Biogeochem. Cycles 11, 173–189.Google Scholar
  21. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: 2001, ‘Carbon Balance of the Terrestrial Biosphere in the Twentieth Century’: Analyses of CO2, Climate and Land-Use Effects with Four Process-Based Ecosystem Models, Global Biogeochem. Cycles 15, 183–206.Google Scholar
  22. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., and Schloss, A. L.: 1993, ‘Global Climate Change and Terrestrial Net Primary Production’ Nature 63, 234–240.Google Scholar
  23. Melillo, J. M., Prentice, I. C., Farquhar, G. D., Schultze, E.-D., Sala, O. E., and contributors: 1996, ‘Terrestrial Biotic Responses to Environmental Change and Feedbacks to Climate’ in Houghton, J. T. et al. (eds.), Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the 2nd Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 445–481.Google Scholar
  24. Mitchell, J. F. B., Johns, T. C., Gregory, J. M., and Tett. S. F. B.: 1995, ‘Climate Response to Increasing Levels of Greenhouse Gases and Sulphate Aerosols’ Nature 376, 501–504.Google Scholar
  25. Mooney, H. A., Canadell, J., Chapin, F. S., Ehleringer, J., Korner, C., McMurtrie, R., Parto, W. J., Pitelka, L. F., and Schulze, E. D.: 1999, ‘Ecosystem Physiology Responses to Global Change’ in Walker, H. B., Steffen, W. L., Canadell, J., and Ingram, J. S. I. (eds.), Implications of Global Change for Natural and Managed Ecosystesm: A Synthesis of GCTE and Related Research, IGBP Book Series No. 4, Cambridge University Press, pp. 141–189.Google Scholar
  26. Pan, Y., McGuire, A. D., Kicklighter, D. W., and Melillo, J. M.: 1996, ‘The Effects of Climate and Soil Data on Estimates of Net Primary Production: A Sensitivity Analysis with the Terrestrial Ecosystem Model’ Global Change Biol. 2, 5–23.Google Scholar
  27. Perez-Garcia, J., Joyce, L., Binkley, C. S., and McGuire, A. D.: 1997, ‘Economic Impacts of Climate Change on the Global Forest Sector’ Critical Rev. Environ. Technol. 27, S123–S138.Google Scholar
  28. Perez-Garcia, J., Wang, Y., and Xu, W.: 1999, ‘An Economic and Environmental Assessment of the Asian Forest Sector’ in Ashimoto, A. and Yukatake, K. (eds.), Global Concerns for Forest Resource Utilization, Kluwer Publishing Co.Google Scholar
  29. Prinn, R. G., Jacoby, H., Sokolov, A., Wang, C., Xiao, X., Yang, Z., Echaus, R., Stone, P., Ellerman, D., Melillo, J., Fitzmaurice, J., Kicklighte R. D., Liu, Y., and Holian, G.: 1999, ‘Integrated Global System Model for Climate Policy Assessment’: Feedbacks and Sensitivity Analysis, Clim. Change 41, 469–546.Google Scholar
  30. Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., Grace, A. L., Moore III, B., and Vorosmarty, C. J.: 1991, ‘Potential Net Primary Productivity in South America: Application of a Global Model’ Ecol. Appl. 1, 399–429.Google Scholar
  31. Schimel, D., Melillo, J., Tian, H., McGuire, A. D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R., Rizzo, B., and Pitelka, L.: 2000, ‘Carbon Storage by the Natural and Agricultural Ecosystems of the U.S. (1980–1993)’ Science 287, 2004–2006.Google Scholar
  32. Sedjo, R. A., Sampson, R. N., Wisniewski, J.: 1997, Economic of Carbon Sequestration in Forestry, Lewis Publishers, Boca Raton, FL.Google Scholar
  33. Sohngen, B. and Mendelsohn, R.: 1998, ‘Valuing the Impact of Large-Scale Ecological Change in a Market; the Effect of Climate Change on U.S. Timber’ Amer. Econ. Rev. 88, 686–710.Google Scholar
  34. Sohngen, B., Mendelsohn, R., and Neilson, R.: 1998, ‘Predicting CO2 Emissions from Forests during Climatic Change: A Comparison of Natural and Human Response Models’ Ambio 27, 509–513.Google Scholar
  35. Solomon, A. M., Ravindranath, N. H., Stewart, R. B., Weber, M., and Nilsson, S.: 1996, ‘Wood Production under Changing Climate and Land Use’ in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge University Press, Cambridge, pp. 489–510.Google Scholar
  36. Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., and Helfrich, J.: 1999, ‘The Sensitivity of Terrestrial Carbon Storage to Historical Climate Variability and Atmospheric CO2 in the United States’ Tellus 51B, 414–452.Google Scholar
  37. Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich III, J. V. K., Moore III, B., and Vorosmarty, C. J.: 2000, ‘Climatic and Biotic Controls on Annual Carbon Storage in Amazonian Ecosystems’, Global Ecol. Biogeogr. 9, 315–336.Google Scholar
  38. Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Moore III, B., and Vorosmarty, C. J.: 1998, ‘Effect of Interannual Climate Variability on Carbon Storage in Undisturbed Amazonian Ecosystems’ Nature 396, 664–667.Google Scholar
  39. Xiao, X., Kicklighter, D. W., Melillo, J. M., McGuire, A. D., Stone, P. H., and Sokolov, A. P.: 1997, ‘Linking a Global Terrestrial Biogeochemical Model with a 2-Dimensional ClimateModel’: Implications for the Global Carbon Budget, Tellus 49B, 18–37.Google Scholar
  40. Xiao, X., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Prinn, R. G., Wang, C., Stone, P. H., and Sokolov, A.: 1998, ‘Transient Climate Change and Net Ecosystem Production of the Terrestrial Biosphere’ Global Biogeochem. Cycles 12, 345–360.Google Scholar
  41. Yang, Z., Ekhaus, R. Z., Ellerman, A. D., and Jacoby, H. D.: 1996, ‘The MIT Emissions Prediction and Policy Analysis (EPPA) Model’ Rep. 6, p. 49, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  42. Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and Environmental Choices in the Stabilization of Atmospheric CO2 Concentrations’ Nature 379, 240–243.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • John Perez-Garcia
    • 1
  • Linda A. Joyce
    • 2
  • A. David Mcguire
    • 3
  • Xiangming Xiao
    • 4
  1. 1.Center for International Trade in Forest ProductsUniversity of WashingtonSeattleU.S.A
  2. 2.Rocky Mountain Research StationUSDA Forest ServiceFort CollinsU.S.A
  3. 3.U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research UnitUniversity of AlaskaFairbanksU.S.A
  4. 4.Complex Systems Research Center, Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamU.S.A

Personalised recommendations