On a Singular Semilinear Elliptic Boundary Value Problem and the Boundary Harnack Principle


On a bounded C 2-domain \(D \subset {\mathbb R}^d \) we consider the singular boundary-value problem 1/2Δu=f(u) in D, u D =φ, where d≥3, f:(0,∞)→(0,∞) is a locally Hölder continuous function such that f(u)→∞ as u→0 at the rate u −α, for some α∈(0,1), and φ is a non-negative continuous function satisfying certain growth assumptions. We show existence of solutions bounded below by a positive harmonic function, which are smooth in D and continuous in \(\bar D\). Such solutions are shown to satisfy a boundary Harnack principle.

This is a preview of subscription content, access via your institution.


  1. 1.

    Athreya, S.: Probability and semilinear partial differential equations, Ph.D. thesis, 1998.

  2. 2.

    Bass, R.F.: Probabilistic Techniques in Analysis, Springer-Verlag, New York, 1995.

    Google Scholar 

  3. 3.

    Bass, R.F. and Burdzy, K.: 'A boundary Harnack principle in twisted Hölder domains', Ann. of Math. 134 (1991), 253–276.

    Google Scholar 

  4. 4.

    Bandle, C. and Marcus, M.: 'Large solutions of semilinear elliptic equations: Existence, uniqueness and assymptotic behavior', J. Anal. Math. (1992), 9-24.

  5. 5.

    Chen, Z. Q., Williams, R.J. and Zhao, Z.: 'On the existence of positive solutions of semi-linear elliptic equations with Dirichlet boundary conditions', Math. Ann. 298 (1994), 543–556.

    Google Scholar 

  6. 6.

    Chung, K.L. and Zhao, Z.: From Brownian Motion to Schrödinger's Equation, Springer-Verlag, New York, 1995.

    Google Scholar 

  7. 7.

    Dynkin, E.B. and Kuznetsov, S.E.: 'Trace on the boundary for solutions of non-linear differential equations', Trans. Amer. Math. Soc. 350 (1998), 4521–4552.

    Google Scholar 

  8. 8.

    Dynkin, E.B.: 'An introduction to branching measure-valued processes', in CRM Monograph Series 6, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  9. 9.

    Fabbri, J. and Veron, L.: 'Singular boundary value problems for non-linear elliptic equations in non-smooth domains', Adv. in Differential Equations (1996), 1075-1098.

  10. 10.

    Le Gall, J.F.: 'Brownian snake and partial differential equations', Probab. Theory Related Fields 102 (1995), 393–432.

    Google Scholar 

  11. 11.

    Lazer, A.C. and Mckenna, P.J.: 'On a singular nonlinear elliptic boundary-value problem', Proc. Amer. Math. Soc. 111(3) (1991), 721–730.

    Google Scholar 

  12. 12.

    Loewner, C. and Nirenberg, C.: 'Partial differential equations invariant under conformal or projective transformations', Contrib. Anal. (1974), 255-272.

  13. 13.

    Trudinger, N.S. and Gilbarg, D.: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.

    Google Scholar 

  14. 14.

    Véron, L. and Gmira, A.: 'Boundary singularities of solutions of some nonlinear elliptic equations', Duke Math. J. 64 (1991), 271–324.

    Google Scholar 

  15. 15.

    Choi, Y.S. and Mckenna, P.J.: 'A singular quasilinear anisotropic elliptic boundary value problem. II', Trans. Amer. Math. Soc. 350(7) (1998), 2925–2937.

    Google Scholar 

  16. 16.

    Zhao, Z.: 'Green function for Schrödinger operator and conditioned Feynman-Kac gauge', J. Math. Anal. Appl. 116(2) (1986), 309–334.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Athreya, S. On a Singular Semilinear Elliptic Boundary Value Problem and the Boundary Harnack Principle. Potential Analysis 17, 293–301 (2002). https://doi.org/10.1023/A:1016122901605

Download citation

  • semi-linear partial differential equations
  • boundary Harnack principle