Skip to main content
Log in

A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Amin, P., Sy, D.A., Pilgrim, M.L., Parry, D.H., Nussaume, L. and Hoffman, N.E. 1999. Arabidopsis mutants lacking the 43-and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol. 121: 61–70.

    Google Scholar 

  • Athma, P., Grotewold, E. and Peterson, T. 1992. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131: 199–209.

    Google Scholar 

  • Bancroft, I., Bhatt, A.M., Sjodin, C., Scofield, S., Jones, J.D. and Dean, C. 1992. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol. Gen. Genet. 233: 449–461.

    Google Scholar 

  • Bancroft, I. and Dean, C. 1993a. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol. Gen. Genet. 240: 65–72.

    Google Scholar 

  • Bancroft, I. and Dean, C. 1993b. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134: 1221–1229.

    Google Scholar 

  • Bate, N., Spurr, C., Foster, G.D. and Twell, D. 1996. Maturation-specific translational enhancement mediated by the 5'-UTR of a late pollen transcript. Plant J. 10: 613–623.

    Google Scholar 

  • Bechtold, N. and Pelletier, G. 1998. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Meth. Mol. Biol. 82: 259–266.

    Google Scholar 

  • Becker, H.A. and Kunze, R. 1996. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol. Gen. Genet. 251: 428–435.

    Google Scholar 

  • Bennetzen, J.L., Schrick, K., Springer, P.S., Brown, W.E. and San-Miguel, P. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565–576.

    Google Scholar 

  • Bensen, R.J., Johal, G.S., Crane, V.C., Tossberg, J.T., Schnable, P.S., Meeley, R.B. and Briggs, S.P. 1995. Cloning and characterization of the maize An1 gene. Plant Cell 7: 75–84.

    Google Scholar 

  • Cardoso, M.I., Meijer, A.H., Rueb, S., Machado, J.A., Memelink, J. and Hoge, J.H. 1997. A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1. Mol. Gen. Genet. 256: 674–681.

    Google Scholar 

  • Castle, L.A., Errampalli, D., Atherton, T.L., Franzmann, L.H., Yoon, E.S. and Meinke, D.W. 1993. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241: 504–514.

    Google Scholar 

  • Chan, M.T., Yu, S.M. 1998. The 3'-untranslated region of a rice ?-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15: 685–695.

    Google Scholar 

  • Chen, J., Greenblatt, I.M. and Dellaporta, S.L. 1987. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117: 109–116.

    Google Scholar 

  • Chuck, G., Meeley, R.B. and Hake, S. 1998. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12: 1145–1154.

    Google Scholar 

  • Cunillera, N., Boronat, A. and Ferrer, A. 2000. Spatial and temporal patterns of GUS expression directed by 5' regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Mol. Biol. 44: 747–758.

    Google Scholar 

  • Das, L. and Martienssen, R. 1995. Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7: 287–294.

    Google Scholar 

  • de Boer, G.J., Testerink, C., Pielage, G., Nijkamp, H.J. and Stuitje, A.R. 1999. Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco. Plant Mol. Biol. 39: 1197–1207.

    Google Scholar 

  • Dooner, H.K. and Belachew, A. 1989. Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122: 447–457.

    Google Scholar 

  • Dubois, P., Cutler, S. and Belzile, F.J. 1998. Regional insertional mutagenesis on chromosome III of Arabidopsis thaliana using the maize Ac element. Plant J. 13: 141–151.

    Google Scholar 

  • Essers, L., Adolphs, R.H. and Kunze, R. 2000. A highly conserved domain of the maize activator transposase is involved in dimerization. Plant Cell 12: 211–224.

    Google Scholar 

  • Fedoroff, N.V. and Smith, D.L. 1993. A versatile system for detecting transposition in Arabidopsis. Plant J. 3: 273–289.

    Google Scholar 

  • Feldmar, S. and Kunze, R. 1991. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 10: 4003–4010.

    Google Scholar 

  • Fladung, M. 1999. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol. Gen. Genet. 260: 574–581.

    Google Scholar 

  • Gheysen, G., Villarroel, R. and Van Montagu, M. 1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 5: 287–297.

    Google Scholar 

  • Greenblatt, I.M. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485.

    Google Scholar 

  • Greenblatt, I.M. and Brink, R.A. 1962. Twin mutations in medium variegated pericarp maize. Genetics 47: 489–501.

    Google Scholar 

  • Greenblatt, I.M. and Brink, R.A. 1963. Transpositions of Modulator in maize into divided and undivided chromosome segments. Nature 197: 412–413.

    Google Scholar 

  • Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509–1517.

    Google Scholar 

  • Halliday, K.J., Hudson, M., Ni, M., Qin, M. and Quail, P.H. 1999. poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc. Natl. Acad. Sci. USA 96: 5832–5837.

    Google Scholar 

  • Henikoff, S. and Comai, L. 1998. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149: 307–318.

    Google Scholar 

  • Hu, G., Yalpani, N., Briggs, S.P. and Johal, G.S. 1998. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10: 1095–1105.

    Google Scholar 

  • Hui, E.K.-W., Wang, P.-C. and Lo, S.J. 1998. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol. Life Sci. 54: 1403–1411.

    Google Scholar 

  • Initiative, A.G. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Ito, T., Seki, M., Hayashida, N., Shibata, D. and Shinozaki, K. 1999. Regional insertion mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method. Plant J. 17: 433–444.

    Google Scholar 

  • Jean, M., Pelletier, J., Hilpert, M., Belzile, F., Kunze, R. 1999. Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol. Gen. Genet. 262: 633–642.

    Google Scholar 

  • Jeddeloh, J.A. and Richards, E.J. 1996. mCCG methylation in angiosperms. Plant J. 9: 579–586.

    Google Scholar 

  • Johnson, K.R., Cook, S.A., Erway, L.C., Matthews, A.N., Sanford, L.P., Paradies, N.E. and Friedman, R.A. 1999. Inner ear and kidney anomalies caused by IAP insertion in an intron of the Eya1 gene in a mouse model of BOR syndrome. Hum. Mol. Genet. 8: 645–653.

    Google Scholar 

  • Jones, J.D., Carland, F., Lim, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    Google Scholar 

  • Kern, J.A., Warnock, L.J. and McCafferty, J.D. 1997. The 3'-untranslated region of IL-1? regulates protein production. J. Immunol. 158: 1187–1193.

    Google Scholar 

  • Kim, H.U., Park, B.S., Jin, Y.M. and Chung, T.Y. 1997. Promoter sequences of two homologous pectin esterase genes from Chinese cabbage (Brassica campestris L. ssp. pekinensis) and pollen-specific expression of the GUS gene driven by a promoter in tobacco plants. Mol. Cells 7: 21–27.

    Google Scholar 

  • Kim, K.N. and Guiltinan, M.J. 1999. Identification of cis-acting elements important for expression of the starch-branching enzyme I gene in maize endosperm. Plant Physiol. 121: 225–236.

    Google Scholar 

  • Krysan, P.J., Young, J.C. and Sussman, M.R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290.

    Google Scholar 

  • Kumar, S. and Fladung, M. 2000. Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol. Gen. Genet. 264: 20–28.

    Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S. et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    Google Scholar 

  • Lister, C. and Dean, C. 1993. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4: 457–463.

    Google Scholar 

  • Liu, S.Y. and Redmond, T.M. 1998. Role of the 3'-untranslated region of RPE65 mRNA in the translational regulation of the RPE65 gene: identification of a specific translation inhibitory element. Arch. Biochem. Biophys. 357: 37–44.

    Google Scholar 

  • Liu, Y.-G., Mitsukawa, N., Oosumi, T. and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Liu, Y.G., Mitsukawa, N. and Whittier, R.F. 1993. Rapid sequencing of unpurified PCR products by thermal asymmetric PCR cycle sequencing using unlabeled sequencing primers. Nucl. Acids Res. 21: 3333–3334.

    Google Scholar 

  • Liu, Y.G. and Whittier, R.F. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674–681.

    Google Scholar 

  • Long, D., Swinburne, J., Martin, M., Wilson, K., Sundberg, E., Lee, K. and Coupland, G. 1993. Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet. 241: 627–636.

    Google Scholar 

  • Long, D., Goodrich, J., Wilson, K., Sundberg, E., Martin, M., Puangsomlee, P. and Coupland, G. 1997. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11: 145–148.

    Google Scholar 

  • Lu, C. and Fedoroff, N. 2000. HYL1, a dsRNA-binding nuclear regulatory protein in plant hormone signaling. Plant Cell 12: 1–15.

    Google Scholar 

  • Machida, D., Onouchi, H., Koizumi, J., Hamada, S., Semiarti, E., Torikai, S. and Machida, Y. 1997. Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc. Natl. Acad. Sci. USA 94: 8675–8680.

    Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403–410.

    Google Scholar 

  • Mathur, J., Szabados, L., Schaefer, S., Grunenberg, B., Lossow, A., Jonas-Straube, E., Schell, J.A.Z. and Koncz-Kalman, Z. 1998. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J. 13: 707–716.

    Google Scholar 

  • Mayer, K., Schuller, C., Wambutt, R. et al. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.

    Google Scholar 

  • Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B. and Koncz, C. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10: 697–704.

    Google Scholar 

  • Meissner, R.C., Jin, H., Cominelli, E. et al. 1999. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11: 1827–1840.

    Google Scholar 

  • Moreno, M.A., Chen, J., Greenblatt, I. and Dellaporta, S.L. 1992. Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics 131: 939–956.

    Google Scholar 

  • Nacry, P., Camilleri, C., Courtial, B., Caboche, M. and Bouchez, D. 1998. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149: 641–659.

    Google Scholar 

  • Negruk, V., Eisner, G. and Lemieux, B. 1996. Addition-deletion mutations in transgenic Arabidopsis thaliana generated by the seed co-cultivation method. Genome 39: 1117–1122.

    Google Scholar 

  • Ohba, T., Yoshioka, Y., Machida, C. and Machida, Y. 1995. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J. 7: 157–164.

    Google Scholar 

  • Osborne, B.I., Wirtz, U. and Baker, B. 1995. A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J. 7: 687–701.

    Google Scholar 

  • Papi, M., Sabatini, S., Bouchez, D., Camilleri, C., Costantino, P. and Vittorioso, P. 2000. Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev. 14: 28–33.

    Google Scholar 

  • Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Timofeev, E., Belgovskiy, A. and Mirzabekov, A. 1996. DNA sequencing by hybridization to microchip octa-and decanucleotides extended by stacked pentanucleotides. Nucl. Acids Res 24: 2998–3004.

    Google Scholar 

  • Parinov, S., Sevugan, M., De, Y., Yang, W.C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.

    Google Scholar 

  • Peterson, T. 1990. Intragenic transposition of Ac generates a new allele of the maize P gene. Genetics 126: 469–476.

    Google Scholar 

  • Pruitt, R.E. and Meyerowitz, E.M. 1986. Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187: 169–183.

    Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennetzen, J.L. 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20: 43–45.

    Google Scholar 

  • Smith, D., Yanai, Y., Liu, Y.G., Ishiguro, S., Okada, K., Shibata, D., Whittier, R.F. and Fedoroff, N.V. 1996. Characterization and mapping of Ds-GUS T-DNA lines for targeted insertional mutagenesis. Plant J. 10: 721–732.

    Google Scholar 

  • Speulman, E., Metz, P.L., van Arkel, G., te Lintel Hekkert, B., Stiekema, W.J. and Pereira, A. 1999. A two-component Enhancer-Inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11: 1853–1866.

    Google Scholar 

  • Stewart, C.N. Jr. and Via, L.E. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748–750.

    Google Scholar 

  • Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H. and Martienssen, R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.

    Google Scholar 

  • Swaminathan, K., Yang, Y., Grotz, N., Campisi, L. and Jack, T. 2000. An enhancer trap line associated with a D-class cyclin gene in Arabidopsis. Plant Physiol. 124: 1658–1667.

    Google Scholar 

  • Takano, M., Egawa, H., Ikeda, J.E. and Wakasa, K. 1997. The structures of integration sites in transgenic rice. Plant J. 11: 353–361.

    Google Scholar 

  • Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G. and Jones, J.D. 1999. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841–1852.

    Google Scholar 

  • Trifiro, M.A., Lumbroso, R., Beitel, L.K., Vasiliou, D.M., Bouchard, J., Deal, C., van Vliet, G. and Pinsky, L. 1997. Altered mRNA expression due to insertion or substitution of thymine at position +3 of two splice-donor sites in the androgen receptor gene. Eur. J. Hum. Genet. 5: 50–58.

    Google Scholar 

  • Tsugeki, R. and Fedoroff, N.V. 1999. Genetic ablation of root cap cells in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 12941–12946.

    Google Scholar 

  • Tsugeki, R., Kochieva, E.Z. and Fedoroff, N.V. 1996. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10: 479–489.

    Google Scholar 

  • Van Lijsebettens, M., Inzé, D., Schell, J., Van Montagu, M. 1986. Transformed cell clones as a tool to study T-DNA integration mediated by Agrobacterium tumefaciens. J.Mol. Biol. 188: 129–145.

    Google Scholar 

  • Wilton, S.D., Lim, L., Dye, D. and Laing, N. 1997. Bandstab: a PCR-based alternative to cloning PCR products. Biotechniques 22: 642–645.

    Google Scholar 

  • Winkler, R.G., Frank, M.R., Galbraith, D.W., Feyereisen, R. and Feldmann, K.A. 1998. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Plant Physiol. 118: 743–750.

    Google Scholar 

  • Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H. and Weisshaar, B. 1998. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 95: 12432–12437.

    Google Scholar 

  • Zhang, J.Z. and Somerville, C.R. 1997. Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc. Natl. Acad. Sci. USA 94: 7349–7355.

    Google Scholar 

  • Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. and Taylor, D.C. 1999. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 19: 645–653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, S., Mahalingam, R., Chen, F. et al. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana . Plant Mol Biol 50, 91–108 (2002). https://doi.org/10.1023/A:1016099215667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016099215667

Navigation