Skip to main content
Log in

Fast and Living Ring-Opening Polymerization of l-Lactide Initiated with In-situ–Generated Calcium Alkoxides

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The ring-opening polymerization of l-lactide with calcium alkoxides generated in-situ from bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] and 2-propanol are presented. The polymerization in THF at room temperature proceeds rapidly and in a living manner, giving poly(l-lactide)s of controlled molecular weight, low polydispersity, and tailored end-functionalities. Kinetic studies show the absence of an induction period and a pseudo-first order rate constant of 6.41 L mol−1 min−1, which is significantly higher than for related Y5(μ-O)(OiPr)13− or aluminum alkoxide-initiated polymerizations. The initiation involves a two-step process: (1) alcoholysis of bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] to give the corresponding calcium alkoxide and (2) ring-opening of l-lactide via acyl-oxygen cleavage and insertion into the calcium-alkoxide bond. In the presence of excess alcohol, fast and reversible exchange between free alcohol molecules and coordinated alkoxide ligands takes place. This allows tuning of the poly(l-lactide) molecular weight over a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES AND NOTES

  1. J. C. Middleton and A. J. Tipton (2000), Biomaterials 21, 2335-2346.

    Google Scholar 

  2. Cargill-Dow LLC invented a new polylactide production process (NatureWorksTM PLA), which would significantly lower the price of polylactides and make them economically viable for packaging and agricultural applications. http://www.cargill-dow.com. R. E. Drumright, P. R. Gruber, and D. E. Henton (2000) Adv. Mater. 12, 1841-1846.

    Google Scholar 

  3. A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings (1992) Macromolecules 25, 6419-6424.

    Google Scholar 

  4. A. Kowalski, A. Duda, and S. Penczek (2000) Macromolecules 33, 689-695.

    Google Scholar 

  5. A. Kowalski, A. Duda, and S. Penczek (2000) Macromolecules 33, 7359-7370.

    Google Scholar 

  6. H. R. Kricheldorf, I. Kreiser-Saunders, and A. Stricker (2000) Macromolecules 33, 702-709.

    Google Scholar 

  7. G. Schwach, J. Coudane, R. Engel, and M. Vert (1998) Polym. Int. 46, 177-182.

    Google Scholar 

  8. H. R. Kricheldorf and D. O. Damrau (1997) Macromol. Chem. Phys. 198, 1753-1766.

    Google Scholar 

  9. H. R. Kricheldorf and I. Kreisersaunders (1990) Makromol. Chem.-Macromol. Chem. Phys. 191, 1057-1066.

    Google Scholar 

  10. Z. Jedlinski, W. Walach, P. Kurcok, and G. Adamus (1991) Makromol. Chem.-Macromol. Chem. Phys. 192, 2051-2057.

    Google Scholar 

  11. P. Dubois, R. Jerome, and P. Teyssie (1991), Makromol. Chem.-Macromol. Symp. 42, 103-116.

    Google Scholar 

  12. W. M. Stevels, P. J. Dijkstra, and J. Feijen (1997) Trends Polym. Sci. 5, 300-305.

    Google Scholar 

  13. W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra, and J. Feijen (1996) Macromolecules 29, 6132-6138.

    Google Scholar 

  14. H. R. Kricheldorf and A. Serra (1985) Polym. Bull. 14, 497.

    Google Scholar 

  15. I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, and M. Vert (1996) Macromolecules 29, 50-56.

    Google Scholar 

  16. S. M. Li, I. Rashkov, J. L. Espartero, N. Manolova, and M. Vert (1996) Macromolecules 29, 57-62.

    Google Scholar 

  17. P. Dobrzynski, J. Kasperczyk, and M. Bero (1999) Macromolecules 32, 4735-4737.

    Google Scholar 

  18. Z. Y. Zhong, M. J. K. Ankone, P. J. Dijkstra, C. Birg, M. Westerhausen, and J. Feijen (2001) Polym. Bull. 46, 51-57.

    Google Scholar 

  19. M. Westerhausen (1991) Inorg. Chem. 30, 96-101.

    Google Scholar 

  20. S. C. Goel, M. A. Matchett, M. Y. Chiang, and W. E. Buhro (1991) J. Am. Chem. Soc. 113, 1844-1845.

    Google Scholar 

  21. W. A. Herrmann, N. W. Huber, and T. Priermeier (1994) Angew. Chem. Int. Educ. Engl. 33, 105-107.

    Google Scholar 

  22. Z. Y. Zhong, P. J. Dijkstra, C. Birg, M. Westerhausen, and J. Feijen (2001) Macromolecules 34, 3863-3868.

    Google Scholar 

  23. A. Kowalski, A. Duda, and S. Penczek (1998) Macromolecules 31, 2114-2122.

    Google Scholar 

  24. N. Ropson, P. Dubois, R. Jerome, and P. Teyssie (1995) Macromolecules 28, 7589-7598.

    Google Scholar 

  25. J. L. Eguiburu, M. J. Fernandez-Berridi, F. P. Cossio, and J. San Roman (1999) Macromolecules 32, 8252-8258.

    Google Scholar 

  26. A. Duda (1996) Macromolecules 29, 1399-1406.

    Google Scholar 

  27. A. Rauk, I. R. Hunt, and B. A. Keay (1994) J. Org. Chem. 59, 6808-6816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Schneiderbauer, S., Dijkstra, P.J. et al. Fast and Living Ring-Opening Polymerization of l-Lactide Initiated with In-situ–Generated Calcium Alkoxides. Journal of Polymers and the Environment 9, 31–38 (2001). https://doi.org/10.1023/A:1016092420618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016092420618

Navigation