Skip to main content
Log in

Topological Model of Nonexpanded Dispersion Interaction Effects: Application to Fullerene Molecules

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A scheme is proposed for obtaining elementary estimates of nonexpanded dispersion energy in large molecules. The scheme is based on a mean energy approximation and a simplified semiempirical approach reducing the problem to Wiberg bond indices. The latter are approximated by the elements of the topological matrix of the molecule for σ-bonds and by Hückel's bond orders for π-bonds. The method is illustrated by the calculation of two- and three-particle dispersion energies for fullerene molecules and graphite tubulenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Buckingham, in: Intermolecular Interactions, From Diatomics to Biopolymers, B. Pullman (ed.), Wiley, New York (1977), pp. 9–98.

    Google Scholar 

  2. I. G. Kaplan, Introduction to Intermolecular Interaction Theory [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  3. R. McWeeny, Croat. Chem. Acta, 57, No. 5, 865–878 (1984).

    Google Scholar 

  4. A. V. Luzanov and A. D. Bochevarov, Khim. Fiz., 19, No. 10, 21–30 (2000).

    Google Scholar 

  5. P. Claverier, in: Intermolecular Interactions, From Diatomics to Biopolymers, B. Pullman (ed.), Wiley, New York(1977), pp. 99-413.

    Google Scholar 

  6. P. Hobza and R. Zahradnik, Intermolecular Complexes, Academia, Prague (1988).

  7. P. P. Shtifanyuk, A. M. Shramkov, S. E. Yakovenko, and A. Geiger, Physica A, 195, 398-416 (1993).

    Google Scholar 

  8. W. J. Goossens, Mol. Cryst. Liq. Cryst., 12, No. 3, 237–244 (1971).

    Google Scholar 

  9. R. J. Bell, J. Phys., B3, 751–762 (1970).

    Google Scholar 

  10. D. E. Stogryn, Mol. Phys., 22, No. 1, 81–103 (1971).

    Google Scholar 

  11. R. Kuroda, S. F. Mason, C. D. Rodger, and R. H. Seal, Chem. Phys. Lett., 57, No. 1, 1–4 (1978).

    Google Scholar 

  12. K. R. Roby, Mol. Phys., 27, No. 1, 81–104 (1974).

    Google Scholar 

  13. D. R. Armstrong, P. G. Perkins, and J. J. P. Stewart, J. Chem. Soc., Dalton Trans., 838–840 (1973).

  14. N. P. Borisova and S. G. Semenov, Vestn. Leningr. Univ., No. 16, 120–124 (1973).

  15. R. Ponec, F. Uhlik, D. L. Cooper, and K. Jug, Croat. Chem. Acta, 69, No. 3, 933–940 (1996).

    Google Scholar 

  16. A. V. Luzanov and L. N. Lisetskii, Zh. Strukt. Khim., 42, No. 4, 654–659 (2001).

    Google Scholar 

  17. G. G. Hall, Trans. Faraday Soc., 53, 573 (1957).

    Google Scholar 

  18. M. M. Mestechkin, Density Matrix Method in Theory of Molecules [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  19. I. Gutman and N. Trinajstic, Top. Curr. Chem., 42, 49–93 (1973).

    Google Scholar 

  20. A. V. Luzanov, V. V. Ivanov, G. T. Klimko, and M. M. Mestechkin, Zh. Strukt. Khim., 39, No. 3, 338–342 (1998).

    Google Scholar 

  21. L. Salem, J. Am. Chem. Soc., 90, No. 3, 543–552 (1968).

    Google Scholar 

  22. M. V. Bazilevskii, Molecular Orbital Method and Reactivity of Organic Molecules [in Russian], Khimiya, Moscow (1969).

    Google Scholar 

  23. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk, 163, No. 2, 33–60 (1993).

    Google Scholar 

  24. M. A. Spackman, J. Chem. Phys., 85, No. 11, 6579–6586 (1986).

    Google Scholar 

  25. M. M. Mestechkin and G. T. Klimko, J. Mol. Struct., 348, 401–404 (1995).

    Google Scholar 

  26. N. Hamada, S.-i. Sawada, and A. Oshiyama, Phys. Rev. Lett., 68, No. 10, 1579–1581 (1992).

    Google Scholar 

  27. G. Leibfried, Microscopic Theory of Mechanical and Thermal Properties of Crystals [in Russian], Fiz.-Mat. Literatura, Moscow (1963).

    Google Scholar 

  28. V. V. Dikii and G. Ya. Kabo, Usp. Khim., 69, No. 2, 107–117 (2000).

    Google Scholar 

  29. N. W. Ashkroft, Nature, 365, 387–388 (1993).

    Google Scholar 

  30. R. J. Bell, Proc. Phys. Soc., 86, 17–22 (1970).

    Google Scholar 

  31. A. V. Luzanov and A. D. Bochevarov, Vestn. Khark. Univ., Ser. Khim., 454, No. 4, 80–83 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzanov, A.V. Topological Model of Nonexpanded Dispersion Interaction Effects: Application to Fullerene Molecules. Journal of Structural Chemistry 43, 1–9 (2002). https://doi.org/10.1023/A:1016089011938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016089011938

Keywords

Navigation