Skip to main content
Log in

The CRK1 receptor-like kinase gene of tobacco is negatively regulated by cytokinin

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

This report describes a novel receptor-like kinase gene of tobacco (Nicotiana tabacum L.) that, in cell culture, is rapidly regulated by very low concentrations of cytokinin. The steady-state transcript level of the CYTOKONIN-REGULATED KINASE 1 gene (CRK1) was strongly reduced 30 min after cytokinin treatment. At higher concentrations abscisic acid and auxin induced a similar response. None of the other plant hormones tested elicited this response. Further analyses of the cytokinin-dependent regulation showed that the reduction of transcript was transient, and the duration of the recovery phase was dependent on the hormone concentration. CRK1 is not a primary response gene as the simultaneous addition of cycloheximide inhibits its regulation by cytokinin. Inhibitor studies revealed that a protein phosphatase is likely involved in signalling processes upstream of CRK1. CRK1 is expressed at low levels in the leaves, stem and roots of tobacco. It is predicted that the CRK1 protein is located in the plasma membrane. It has in its N-terminal putative receptor sequence a signal peptide, a serine- and a proline-rich region, a six repeat motif similar to the CRINKLY4 protein of Zea mays and several regions homologous to purine-binding motifs. A single transmembrane domain is followed by a highly conserved intracellular Ser/Thr kinase domain. Therefore, CRK1 is a novel type of class I plant receptor kinase. We hypothesize that CRK1 is involved in an early step of hormone signalling and that transcript down-regulation reflects a desensitization step in reaction to the signalling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Bairoch, A. and Bucher, P. 1994. PROSITE: recent developments. Nucl. Acids Res. 22: 3583–3589.

    Google Scholar 

  • Becraft, P.W. 1998. Receptor kinases in plant development. Trends Plant Sci. 3: 384–388.

    Google Scholar 

  • Becraft, P.W., Stinard, P.S. and McCarty, D.R. 1996. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273: 1406–1409.

    Google Scholar 

  • Bleecker, A.B., Esch, J.J., Hall, A.E., Rodriguez, F.I. and Binder, B.M. 1998. The ethylene-receptor family from Arabidopsis: structure and function. Phil. Trans. R. Soc. Lond. Ser. B. 353: 1405–1412.

    Google Scholar 

  • Brandstatter, I. and Kieber, J.J. 1998. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009–1019.

    Google Scholar 

  • Brault, M., Maldiney, R. and Miginiac, E. 1997. Cytokinin-binding proteins. Physiol. Plant. 100: 520–527.

    Google Scholar 

  • Busk, P.K., Pujal, J., Jessop, A., Lumbreras, V. and Pagès, M. 1999. Constitutive protein-DNA interactions on the abscisic acidresponsive element before and after developmental activation of the rab28 gene. Plant Mol. Biol. 41: 529–536.

    Google Scholar 

  • Crowell, D.N. 1994. Cytokinin regulation of a soybean pollen allergen gene. Plant Mol. Biol. 25: 829–835.

    Google Scholar 

  • Cserzo, M., Wallin, E., Simon, I., von Heijne, G. and Elofsson, A. 1997. Prediction of transmembrane ?-helices in prokaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng. 10: 673–676.

    Google Scholar 

  • D'Agostino, I.B. and Kieber, J.J. 1999a. Molecular mechanisms of cytokinin action. Curr. Opin. Plant Biol. 2: 359–364.

    Google Scholar 

  • D'Agostino I.B. and Kieber, J.J. 1999b. Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem. Sci. 24, 452–456.

    Google Scholar 

  • D'Agostino, I.B., Deruere, J. and Kieber, J.J. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124: 1706–1717.

    Google Scholar 

  • Du, X., Fox, J.E. and Pei, S. 1996. Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib ?. J. Biol. Chem. 271: 7362–7367.

    Google Scholar 

  • Deikman, J. and Hammer, P.E. 1995. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108: 47–57.

    Google Scholar 

  • De Loose, M., Alliotte, T., Gheysen, G., Genetello, C., Gielen, J., Soetaert, P., Van Montagu, M. and Inzé, D. 1988. Primary structure of a hormonally regulated ?-glucanase of Nicotiana plumbaginifolia. Gene 70: 13–23.

    Google Scholar 

  • Dominov, J.A., Stenzler, L., Lee, S., Schwarz, J.J., Leisner, S. and Howell, S.H. 1992. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell 4: 451–461.

    Google Scholar 

  • Faiss, M., Zalubílova, J., Strnad, M. and Schmülling, T. 1997. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12: 401–415.

    Google Scholar 

  • Faust, J.R. and Dice, J.F. 1991. Evidence for isopentenyladenine modification on a cell cycle-regulated protein. J. Biol. Chem. 266: 9961–9970.

    Google Scholar 

  • Flores, S. and Tobin, E.M. 1988. Cytokinin modulation of LHCP mRNA levels: the involvement of post-transcriptional regulation. Plant Mol. Biol. 11: 409–415.

    Google Scholar 

  • Glab, N., Labidi, B., Qin, L.-X., Trehin, C., Bergounioux, C. and Meijer, L. 1994. Olomoucine, an inhibitor of the cdc2/cdk2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Lett. 353: 207–211.

    Google Scholar 

  • Hanks, S.K. and Quinn, A.M. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Meth. Enzymol. 200: 38–62.

    Google Scholar 

  • Hanks, S.K., Quinn, A.M. and Hunter, T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Google Scholar 

  • Hardie, D.G. 1989. Effects of the tumor promoter ocadaic acid on intracellular protein phosphorylation and metabolism. Nature 337: 78–81.

    Google Scholar 

  • Hare, P.D. and van Staden, J. 1997. The molecular basis of cytokinin action. Plant Growth Regul. 23: 41–78.

    Google Scholar 

  • Havlí?ek, L., Hanuš, J., Veselý, J., Leclerc, S., Meijer, L., Shaw, G. and Strnad, M. 1997. Cytokinin-derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J. Med. Chem. 40: 408–412.

    Google Scholar 

  • Haystead, T.A.J., Sim, A.T.R., Carling, D., Honnor, R.C., Tsukitani, Y., Cohen, P. and Hardie, D.G. 1989. Effects of the tumor promoter ocadaic acid on intracellular protein phosphorylation and metabolism. Nature 337: 78–81.

    Google Scholar 

  • Hofmann, K. and Stoffel, W. 1993. TMbase-a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 347: 166.

    Google Scholar 

  • Hubank, M. and Schatz, D.G. 1994. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl. Acids. Res. 22: 5640–5648.

    Google Scholar 

  • Ikeda, Y., Koizumi, N., Kusano, T. and Sano, H. 1999. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol. 121: 813–820.

    Google Scholar 

  • Imamura, A., Hanaki, N., Umeda, H, Nakamura, A., Suzuki, T., Ueguchi, C. and Mizuno, T. 1998. Response regulators implicated in His-to-Asp phosphotransfer signalling in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 2691–2696.

    Google Scholar 

  • Inoue, T., Higushi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. and Kakimoto, T. 2001. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060–1063.

    Google Scholar 

  • Kakimoto, T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal trans-duction. Science 274: 982–985.

    Google Scholar 

  • Kanyuka, K., Couch, D. and Hooley, R. 2001. A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr. Biol. 11: 535.

    Google Scholar 

  • Klebe, C., Prinz, H., Wittinghofer, A. and Goody, R.S. 1995. The kinetic mechanism of Ran-nucleotide exchange catalysed by RCC1. Biochemistry 34: 12543–12552.

    Google Scholar 

  • Klein, P., Kanehisa, M. and DeLisi, C. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815: 468–476.

    Google Scholar 

  • Lehmann, A., Black, R. and Ecker, J. 1996. Hookless1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocothyl. Cell 85: 183–194.

    Google Scholar 

  • Li, Z. and Wurtzel, E.T. 1998. The ltk gene family encodes novel receptor-like kinases with temporal expression in developing maize endosperm. Plant Mol. Biol. 37: 749–761.

    Google Scholar 

  • Lu, J.L., Ertl, J.R. and Chen, C. 1992. Transcriptional regulation of nitrate reductase mRNA levels by cytokinin-abscisic acid interactions in etiolated barley leaves. Plant Physiol. 98: 1255–1260.

    Google Scholar 

  • Mähonen, A.P., Bonnke, M., Kauppinen, L., Riikonen, M., Benfey, P.N. and Helariutta, Y. 2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14: 2938–2943.

    Google Scholar 

  • McCarty, D.R. and Chory, J. 2000. Conservation and innovation in plant signalling pathways. Cell 103: 201–209.

    Google Scholar 

  • McGeoch, D.J. 1985. On the predictive recognition of signal peptide sequences. Virus Res. 3: 271–286.

    Google Scholar 

  • Mok, M.C. 1994. Cytokinins and plant development: an overview. In: D.W.S. Mok and M.C. Mok (Eds.) Cytokinins: Chemistry, Activity and Function, CRC Press, Boca Raton, FL, pp. 155–166.

    Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for plant growth and bioassays with tobacco tissue culture. Plant Physiol. 15: 473–497.

    Google Scholar 

  • Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res 8: 4321–4325.

    Google Scholar 

  • Nakai, K. and Kanehisa, M. 1991. Expert system for predicting protein localization sites in gram-negative bacteria. Proteins Struct. Funct. Genet. 11: 95–110.

    Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.

    Google Scholar 

  • Puissant, C. and Houdebine, L.-M. 1990. An improvement of the single-step method of the RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. BioTechniques 8: 148–149.

    Google Scholar 

  • Ren, R., Mayer, B.J., Cicchetti, P. and Baltimore, D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259: 1157–1161.

    Google Scholar 

  • Renault, L. Nassar, N., Vetter, I., Becker, J., Klebe, C., Roth, M. and Wittinghofer, A. 1998. The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392: 97–101.

    Google Scholar 

  • Rost, B. 1996. PHD: predicting one-dimensional protein structure by profile based neural networks. Meth. Enzymol. 266: 525–539.

    Google Scholar 

  • Rost, B., Casadio, R., Fariselli, P. and Sander, C. 1995. Prediction of helical transmembrane segments at 95% accuracy. Protein Sci. 4: 521–533.

    Google Scholar 

  • Rost, B., Fariselli, P. and Casadio, R. 1996. Topology prediction for helical transmembrane segments at 85% accuracy. Protein Sci. 7: 1704–1718.

    Google Scholar 

  • Rupp, H., Frank, M., Werner, T., Strnad, M. and Schmülling, T. 1999. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18: 357–363.

    Google Scholar 

  • Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P. and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I?B. Plant Cell 9: 504–509.

    Google Scholar 

  • Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M. and Sugiyama, T. 1998. A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J. 14: 337–344.

    Google Scholar 

  • Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sano, H. and Youssefian, S. 1994. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc. Natl. Acad. Sci. USA 91: 2582–2586.

    Google Scholar 

  • Schäfer, S., Krolzik, S., Romanov, G. and Schmülling, T. 2000. Cytokinin-regulated transcripts in tobacco cell culture. Plant Growth Regul. 32: 307–313.

    Google Scholar 

  • Schmülling, T. 2001. CREam of cytokinin signalling: receptor identified. Trends Plant Sci. 6: 281–284.

    Google Scholar 

  • Schmülling, T., Schäfer, S. and Romanov, G. 1997. Cytokinins as regulators of gene expression. Physiol. Plant. 100: 505–519.

    Google Scholar 

  • Schmülling, T., Rupp, H.M., Frank, M. and Schäfer, S. 1999. Recent advances in cytokinin research: receptor candidates, primary response genes, mutants and transgenic plants. In: M. Strnad, P. Pec and E. Beck (Eds.) Advances in Regulation of Plant Growth and Development, Peres Publishers, Prague, pp. 85–96.

    Google Scholar 

  • Schulze-Gahmen, U., Brandsen, J., Jones, D.H., Morgan, D.O., Meijer, L., Vesely, J. and Kim, S.-H. 1995. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22: 378–391.

    Google Scholar 

  • Silver, D.L., Pinaev, A., Chen, R. and de Bruijn, F.J. 1996. Postranscriptional regulation of the Sesbania rostrata early nodulin gene SrEnod2 by cytokinin. Plant Physiol. 112: 559–567.

    Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A.H. 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.

    Google Scholar 

  • Strnad, M., Peters, W., Beck, E. and Kamínek, M. 1992. Immunodetection and identification of N6-(o-hydroxybenzylamino)purine as naturally occurring cytokinin in Populus x canadensis cv. Robusta leaves. Plant Physiol. 99: 74–80.

    Google Scholar 

  • Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. and Mizuno, T. 2001. The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol. 42: 107–113.

    Google Scholar 

  • Taniguchi, M., Kiba, T., Sakakibara, H., Ueguchi, C., Mizuno, T. and Sugiyama, T. 1998. Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett. 429: 259–262.

    Google Scholar 

  • Teramoto, H., Momotani, E., Takeba, G. and Tsuji, H. 1994. Isolation of a cDNA clone for a cytokinin-repressed gene in excised cucumber cotyledons. Planta 193: 573–579.

    Google Scholar 

  • Veselý, J., Havlí?ek, L., Strnad, M., Blow, J.J., Donella-Deana, A., Pinna, L., Letham, D.S., Kato, J., Detivaud, L., Leclerc, S. and Meijer, L. 1994. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 224: 771–786.

    Google Scholar 

  • Vögeli-Lange, R., Fründt, C., Hart, C.M., Nagy, F. and Meins, F. Jr. 1994. Developmental, hormonal and pathogenesis-related regulation of the tobacco class I ?-1,3-glucanase B promoter. Plant Mol. Biol. 25: 299–311.

    Google Scholar 

  • Westneat, D.F., Noon, W.A., Reeve, H.K. and Aquadro, C.F. 1988. Improved hybridization conditions for DNA 'fingerprints' probed with M13. Nucl. Acids. Res. 16: 4161.

    Google Scholar 

  • Wilkinson, J.Q., Lanaham, M.B., Yen, H.C., Giovannoni, J.J. and Klee, H.J. 1995. An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270: 1807–1809.

    Google Scholar 

  • Williams, M.P. 1994. The structure and function of proline-rich regions in proteins. Biochem. J. 297: 249–260.

    Google Scholar 

  • Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K. and Mizuno, T. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol., in press.

  • Yamamoto, Y.Y., Matsui, M., Ang, L.H. and Deng, X.-W. 1998. Role of COP1 interacting protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell 19: 1083–1094.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, S., Schmülling, T. The CRK1 receptor-like kinase gene of tobacco is negatively regulated by cytokinin. Plant Mol Biol 50, 155–165 (2002). https://doi.org/10.1023/A:1016087908746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016087908746

Navigation