Skip to main content
Log in

Dehydration Mechanism and Crystallisation Behaviour of Lactose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The dehydration mechanism of α-lactose monohydrate was investigated by several techniques and interpreted on the basis of structural data. Whatever the dehydration conditions (heating or use of hygroscopic organic solvents), the departure of water molecules occurs cooperatively in channels parallel to the c axis of the initial structure. Subsequently, the reorganization leads to the closest packing (hygroscopic metastable form, LαH) under heating or to the stable anhydrous form (LαS), probably via a nucleation and growth process in ethanol. The use of acetone as dehydrating solvent on single crystals of α-lactose monohydrate led to the unexpected formation of single crystals of the anomeric β-lactose at room temperature, from which the crystal structure of β-lactose could be accurately re-determined. Recrystallization experiments of anhydrous lactose allowed to prepare N-methylpyrrolidinone and DMSO solvates of α-lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Guillory, Polymorphism in pharmaceutical solids (ed. H. G. Brittain), Marcel Dekker Inc., New York 1999, p. 183.

    Google Scholar 

  2. E. Garcia, S. Veesler, R. Boistelle and C. Hoff, J. Cryst. Growth, 198/199 (1999) 1360.

    Article  CAS  Google Scholar 

  3. N. Rodriguez-Hornedo and D. Murphy, J. Pharm. Sci., 88 (1999) 651.

    Article  CAS  Google Scholar 

  4. S. R. Byrn, R. R. Pfeiffer, G. Stephenson, D. J. W. Grant and W. B. Gleason, Chem. Mater., 6 (1994) 1148.

    Article  CAS  Google Scholar 

  5. J. Bernstein, R. J. Davey and J.-O. Henck, Angew. Chem. Int. Ed. Engl., 38 (1999) 3440.

    Article  Google Scholar 

  6. D. Giron, Thermochim. Acta, 248 (1995) 1.

    Article  CAS  Google Scholar 

  7. K. R. Morris, S. L. Nail, G. E. Peck, S. R. Byrn, U. J. Griesser, J. G. Stowell, S.-J. Hwang and K. Park, Pharm. Sci. & Techn. Tod., 1 (1998), 235.

    Article  CAS  Google Scholar 

  8. T. L. Threlfall, Analyst, 120 (1995) 2435.

    Article  CAS  Google Scholar 

  9. S. R. Byrn, R. R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, Pharm. Res., 12 (1995) 945.

    Article  CAS  Google Scholar 

  10. J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 28 (1995) 193.

    Article  CAS  Google Scholar 

  11. J. Bernstein and J.-O. Henck, Cryst. Eng., 1 (1998) 119.

    Article  CAS  Google Scholar 

  12. N. Blagden, R. J. Davey, R. Rowe and R. Roberts, Int. J. Pharm., 172 (1998) 169.

    Article  CAS  Google Scholar 

  13. J.-O. Henck, J. Bernstein, A. Ellern and R. Boese, J. Am. Chem. Soc., 123 (2001) 1834.

    Article  CAS  Google Scholar 

  14. F. J. J. Leusen, J. Cryst. Growth, 166 (1996) 900.

    Article  CAS  Google Scholar 

  15. A. Gavezzotti, Faraday Discuss., 106 (1997) 63.

    Article  CAS  Google Scholar 

  16. G. R. Desiraju, Science, 278 (1997) 404.

    Article  CAS  Google Scholar 

  17. B. P. van Eijck and J. Kroon, Acta Cryst., B56 (2000) 535.

    CAS  Google Scholar 

  18. S. Petit and G. Coquerel, Chem. Mater., 8 (1994) 2247.

    Article  Google Scholar 

  19. F. W. Goodhart, Handbook of Pharmaceutical Excipients (2nd ed.), Ed. A. Wade and P. J. Weller, The Pharmaceutical Press, London 1994, p. 252.

    Google Scholar 

  20. T. J. Buma and G. A. Wiegers, Neth. Milk & Dairy J., 21 (1967) 208.

    CAS  Google Scholar 

  21. E. Berlin, P. G. Kliman, B. A. Anderson and M. J. Pallansch, Thermochim. Acta, 2 (1971) 143.

    Article  CAS  Google Scholar 

  22. Y. Roos and M. Karel, J. Food Sci., 57 (1992) 775.

    Article  CAS  Google Scholar 

  23. T. D. Dincer, G. M. Parkinson, A. L. Rohl and M. I. Ogden, J. Cryst. Growth, 205 (1999) 368.

    Article  CAS  Google Scholar 

  24. T. A. Nickerson and E. E. Moore, J. Dairy Sci., 57 (1974) 1315.

    CAS  Google Scholar 

  25. C. F. Lerk, A. C. Andreae, A. H. de Boer, P. de Hoog, K. Kussendrager and J. van Leverink, J. Pharm. Sci., 73 (1984) 856.

    CAS  Google Scholar 

  26. S. L. Raghavan, R. I. Ristic, D. B. Sheen and J. N. Sherwood, J. Pharm. Sci., 90 (2001) 823.

    Article  CAS  Google Scholar 

  27. T. Itoh, M. Satoh and S. Adachi, J. Dairy Sci., 60 (1977) 1230.

    CAS  Google Scholar 

  28. L. O. Figura and M. Epple, J. Thermal Anal., 44 (1995) 45.

    CAS  Google Scholar 

  29. S. G. Lim and T. A. Nickerson, J. Dairy Sci., 56 (1973) 843.

    Article  CAS  Google Scholar 

  30. T. J. Buma, Neth. Milk & Dairy J., 32 (1978) 258.

    CAS  Google Scholar 

  31. D. C. Fries, S. T. Rao and M. Sundaralingam, Acta Cryst., B27 (1971) 994.

    Google Scholar 

  32. C. A. Beevers and H. N. Hansen, Acta Cryst., B27 (1971) 1323.

    Google Scholar 

  33. J. H. Noordik, P. T. Beurskens, P. Bennema, R. A. Visser and R. O. Gould, Z. Kristallogr., 168 (1984) 59.

    Article  CAS  Google Scholar 

  34. P. Walstra and R. Jenness, Dairy Chemistry and Physics, ‘Carbohydrates’, Chap. 3, John Wiley and Sons Ltd., New York 1984, p. 27.

    Google Scholar 

  35. G. M. Sheldrick, SHELXTL, Release 5.10, (Program for the determination and the refinement of crystal structures), Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

  36. A. K. Galwey, Thermochim. Acta, 355 (2000) 181.

    Article  CAS  Google Scholar 

  37. K. Shankland, W. I. F. David and T. Csoka, Z. Kristallogr., 212 (1997) 550.

    Article  CAS  Google Scholar 

  38. G. A. Stephenson, J. Pharm. Sci., 89 (2000) 958.

    Article  CAS  Google Scholar 

  39. A. Altomare, J. Foadi, C. Giacovazzo, A. G. G. Moliterni, M. C. Burla and G. Polidori, J. Appl. Cryst., 31 (1998) 74.

    Article  CAS  Google Scholar 

  40. C. Gervais and G. Coquerel, Acta Cryst. A, submitted (2001).

  41. S. Nordhoff and J. Ulrich, J. Therm. Anal. Cal., 57 (1999) 181.

    Article  CAS  Google Scholar 

  42. E. Laine, V. Tuominen, P. Ilvessalo and P. Kahela, Int. J. Pharm., 20 (1984) 307.

    Article  CAS  Google Scholar 

  43. C. C. Evans, Whiskers, Mills and Boon, London 1972, p. 19

    Google Scholar 

  44. K. Hirotsu and A. Shimada, Bull. Chem. Soc. Japan, 47 (1974) 1872.

    Article  CAS  Google Scholar 

  45. R. Docherty, G. Clydesdale, K. J. Roberts and P. Bennema, J. Phys. D: Appl. Phys., 24 (1991) 89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnier, S., Petit, S. & Coquerel, G. Dehydration Mechanism and Crystallisation Behaviour of Lactose. Journal of Thermal Analysis and Calorimetry 68, 489–502 (2002). https://doi.org/10.1023/A:1016087702409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016087702409

Navigation