Skip to main content
Log in

The Effect of pH on the Alternative Oxidase Activity in Isolated Acanthamoeba castellanii Mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondria of Acanthamoeba castellanii possess a cyanide-resistant GMP-stimulated ubiquinol alternative oxidase in addition to the cytochrome pathway. In a previous work it has been observed that an interaction between the two ubiquinol-oxidizing pathways exists in intact A. castellanii mitochondria and that this interaction may be due to a high sensitivity of the alternative oxidase to matrix pH. In this study we have shown that the alternative oxidase activity reveals a pH-dependence with a pH optimum at 6.8 whatever the reducing substrate may be. The GMP stimulation of alternative oxidase is also strongly dependent on pH implicating probably protonation/deprotonation processes at the level of ligand and protein with an optimum pH at 6.8. The ubiquinone redox state-dependence of alternative oxidase activity is modified by pH in such a way that the highest activity for a given ubiquinone redox state is observed at pH 6.8. Thus pH, binding of GMP, and redox state of ubiquinone collaborate to set the activity of the GMP-stimulated alternative oxidase in isolated A. castellanii mitochondria. The high pH sensitivity of the alternative oxidase could link inactivation of the cytochrome pathway proton pumps to activation of the alternative oxidase with acceleration of redox free energy dissipation as a consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Albury, M. S., Affourtit, C., Crichton, P. G., and Moore, A. L. (2002). J. Biol. Chem. 277, 1190–1194.

    Google Scholar 

  • Andersson, M. E., and Norlund, P. (1999). FEBS Lett. 449, 17–22.

    Google Scholar 

  • Berthold, D. A., Andersson, M. E., and Nordlund, P. (2000). Biochim. Biophys. Acta 1460, 241–254.

    Google Scholar 

  • Doussiere, J., and Vignais, P. V. (1984). Biochem. J. 220, 787–794.

    Google Scholar 

  • Edwards, S. W., and Lloyd, D. (1978). Biochem. J. 174, 203–211.

    Google Scholar 

  • Elthon, T. E., and McIntosh, L. (1986). Plant Physiol. 82, 1–6.

    Google Scholar 

  • Elthon, T. E., Stewart, C. E., McCoy, C. A., and Bonner, W. D., Jr. (1986). Plant Physiol. 80, 378–383.

    Google Scholar 

  • Gronall, A. G., Bardawill, C. J., and David, M. M. (1949). J. Biol. Chem. 177, 751–766.

    Google Scholar 

  • Hanssens, L., and Verachtert, H. (1976). J. Bacteriol. 125, 829–836.

    Google Scholar 

  • Hoefnagel, M. H. N., Rich, P. R., Zhang, Q., and Wiskich, J. T. (1997). Plant Physiol. 115, 1145–1153.

    Google Scholar 

  • Hoefnagel, M. H. N., and Wiskich, J. T. (1996). Plant Physiol. 110, 1329–1335.

    Google Scholar 

  • Hryniewiecka, L., Jenek, J., and Michejda, J. (1978). In Plant Mitochondria (Ducet, G., and Lance, C., eds.), Elsevier, Amsterdam, pp. 307–314.

    Google Scholar 

  • Jarmuszkiewicz, W., and Hryniewiecka, L. (1994). Acta Biochimica Polonica 41, 218–220.

    Google Scholar 

  • Jarmuszkiewicz, W., Sluse, F. E., Hryniewiecka, L., and Sluse-Goffart, C. M. (2002). J. Bioenerg. Biomembr. 34, 31–40.

    Google Scholar 

  • Jarmuszkiewicz, W., Sluse-Goffart, C. M., Hryniewiecka, L., and Sluse, F. E. (1998). J. Biol. Chem. 273, 10174–10180.

    Google Scholar 

  • Jarmuszkiewicz, W., Sluse-Goffart, C. M., Vercesi, A., and Sluse, F. E. (2001). Biosci. Rep. 21, 213–221.

    Google Scholar 

  • Jarmuszkiewicz, W., Wagner, A. M., Wagner, M. J., and Hryniewiecka, L. (1997). FEBS Lett. 411, 110–114.

    Google Scholar 

  • Joseph-Horne, T., Hollomon, D.W., and Wood, P. M. (2001). FEBS Lett. 1504, 179–195.

    Google Scholar 

  • Lima, A., Jr., Costa, J. H., Jolivet, Y., Dizengremel, P., Orellano, E. G., Jarmuszkiewicz, W., Sluse, F., Fernandes de Melo, D., and Silva Lima, M. (2000). Plant Physiol. Biochem. 38, 1–7.

    Google Scholar 

  • Sakajo, S., Minagawa, N., and Yoshimoto, Y. (1997). Biosci. Biotechnol. Biochem. 61, 397–399.

    Google Scholar 

  • Sharpless, T. K., and Butov, R. A. (1970). J. Biol. Chem. 245, 58–70.

    Google Scholar 

  • Siedow, J. N., and Umbach, A. L. (2000). Biochim. Biophys. Acta 1459, 432–439.

    Google Scholar 

  • Siedow, J. N., Umbach, A. L., and Moore, A. L. (1995). FEBS Lett. 362, 10–14.

    Google Scholar 

  • Sluse, F. E., and Jarmuszkiewicz, W. (2002). FEBS Lett. 510, 117–120.

    Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (2000). Arch. Biochem. Biophys. 378, 234–245.

    Google Scholar 

  • Van den Bergen, C. W. M., Wagner, A. M., Krab, K., and Moore, A. L. (1994). Eur. J. Biochem. 226, 1071–1078.

    Google Scholar 

  • Vanderleyden, J., Kurth, J., and Verachtert, H. (1979). Biochem. J. 182, 437–443.

    Google Scholar 

  • Vanderleyden, J., Peeters, C., Verachtert, H., and Bertrandt, H. (1980). Biochem. J. 188, 141–144.

    Google Scholar 

  • Vanlerberghe, G. C., and McIntosh, L. (1997). Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 703–734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis E. Sluse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarmuszkiewicz, W., Hryniewiecka, L. & Sluse, F.E. The Effect of pH on the Alternative Oxidase Activity in Isolated Acanthamoeba castellanii Mitochondria. J Bioenerg Biomembr 34, 221–226 (2002). https://doi.org/10.1023/A:1016087520888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016087520888

Navigation