Skip to main content
Log in

Mg2+ transport in the kidney

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Magnesium is abundant in biological systems and an important divalent cation in the human body. Mg2+ helps mediate cellular energy metabolism, ribosomal and membrane integrity. Additionally Mg2+ modulates the activity of several membrane transport and signal transduction systems. Despite its importance however, little is known about the molecular mechanisms of Mg2+ transport and homeostasis in mammals. In mammals the amount of Mg2+ absorption is about the same as the amount of Mg2+ excretion in urine. Additionally, when total Mg2+ intake is deficient, the kidney is capable of reabsorbing all filtered Mg2+. This balance between intake and excretion indicates that the kidney plays a principal role in maintenance of total body Mg2+ homeostasis. Within the kidney, Mg2+ filtered by the glomerulus is handled in different ways along the nephron. About 10–20% of Mg2+ is reabsorbed by the proximal tubule. the bulk of Mg2+ (about 50–70%) is reabsorbed by the cortical thick ascending limb of the loop of Henle. In this region, Mg2+ moves across the epithelium through the paracellular pathway, driven by the positive lumenal transepithelial voltage. A recently cloned human gene, paracellin-1 was shown to encode a protein localized to the tight junctions of the cortical thick ascending limb and is thought to mediate Mg2+ transport via the paracellular space of this epithelium. The distal convoluted tubule reabsorbs the remaining 5–10% of filtered Mg2+. This segment seems to play an important role in determining final urinary excretion, since there is no evidence for significant Mg2+ absorption beyond the distal tubule. Although many renal Mg2+ transport activities have been characterized, no Mg2+ transporter cDNAs have been cloned from mammalian tissues. Recent research has certainly expanded our knowledge of Mg2+ transport in kidney; but details of the transport processes and the mechanisms by which they control Mg2+ excretion must await cloning of renal Mg2+ transporters and/or channels. Such information would provide new concepts in our understanding of renal Mg2+ handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpern RJ, Cogan MG, Rector FC, Jr. 1983 Flow dependence of proximal tubular bicarbonate absorption. Am J Physiol 245, F478-84.

    Google Scholar 

  • Alpern RJ, Rector FC, Jr. 1996 Renal Acidification Mechanisms. In Brenner BM and Recotr FC, Jr. eds. The kidney, vol. 1 Philadelphia, PA: W.B. Saunders Co.

    Google Scholar 

  • Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, Krapcho K, Hebert SC, Brown EM. 1996 Expression and characterization of inactivating and activating mutations in the human Ca2+ o-sensing receptor. J Biol Chem 271, 19537-19545.

    Google Scholar 

  • Bailly C, Amiel C. 1982 Effect of glucagon on magnesium renal reabsorption in the rat. Pflugers Arch 392, 360-365.

    Google Scholar 

  • Bapty BW, Dai LJ, Ritchie G, Canaff L, Hendy GN, Quamme GA. 1998 Mg2+/Ca2+ sensing inhibits hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 275, F353-F360.

    Google Scholar 

  • Brannan PG, Vergne-Marini P, Pak CY, Hull AR, Fordtran JS. 1976 Magnesium absorption in the human small intestine. Results in normal subjects, patients with chronic renal disease, and patients with absorptive hypercalciuria. J Clin Invest 57, 1412-1418.

    Google Scholar 

  • Brenner BM, Rector FC Jr. 1996 The kidney. Philadelphia, PA: W.B. Saunders Co.

    Google Scholar 

  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. 1993 Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575-580.

    Google Scholar 

  • Burnatowska MA, Harris CA, Sutton RA, Dirks JH. 1977 Effects of PTH and cAMP on renal handling of calcium, magnesium, and phosphate in the hamster. Am J Physiol 233, F514-F518.

    Google Scholar 

  • Cefaratti C, Romani A, Scarpa A. 1998 Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver. Am J Physiol 275, C995-C1008.

    Google Scholar 

  • Chou YH, Pollak MR, Brandi ML, Toss G, Arnqvist H, Atkinson AB, Papapoulos SE, Marx S, Brown EM, Seidman JG et al. 1995 Mutations in the human Ca2+-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet 56, 1075-1079.

    Google Scholar 

  • Coburn JW, Massry SG. 1970 Changes in serum and urinary calcium during phosphate depletion: studies on mechanisms. J Clin Invest 49, 1073-1087.

    Google Scholar 

  • Dai LJ, Bapty B, Ritchie G, Quamme GA. 1998a Glucagon and arginine vasopressin stimulate Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 274, F328-335.

    Google Scholar 

  • Dai LJ, Friedman PA, Quamme GA. 1997a Cellular mechanisms of chlorothiazide and cellular potassium depletion on Mg2+ uptake in mouse distal convoluted tubule cells. Kidney Int 51, 1008-1017.

    Google Scholar 

  • Dai LJ, Friedman PA, Quamme GA. 1997b Phosphate depletion diminishes Mg2+ uptake in mouse distal convoluted tubule cells. Kidney Int 51, 1710-1718.

    Google Scholar 

  • Dai LJ, Raymond L, Friedman PA, Quamme GA. 1997c Mechanisms of amiloride stimulation of Mg2+ uptake in immortalized mouse distal convoluted tubule cells. Am J Physiol 272, F249-F256.

    Google Scholar 

  • Dai LJ, Ritchie G, Bapty B, Quamme GA. 1998b Aldosterone potentiates hormone-stimulated Mg2+ uptake in distal convoluted tubule cells. Am J Physiol 274, F336-F341.

    Google Scholar 

  • Dai LJ, Ritchie G, Bapty BW, Kerstan D, Quamme GA. 1999 Insulin stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 277, F907-F913.

    Google Scholar 

  • Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. 2001 Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81, 51-84.

    Google Scholar 

  • de Rouffignac C, Corman B, Roinel N. 1983 Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney. Am J Physiol 244, F156-F164.

    Google Scholar 

  • Di Stefano A, Desfleurs E, Simeone S, Nitschke R, Wittner M. 1997 Ca2+ and Mg2+ sensor in the thick ascending limb of the loop of Henle. Kidney Blood Press Res 20, 190-193.

    Google Scholar 

  • Eknoyan G, Martinez-Maldonado M, Suki WN, Richie Y. 1970 Renal diluting capacity in the hypokalemic rat. Am J Physiol 219, 933-937.

    Google Scholar 

  • Griffiths EJ. 2000 Calcium handling and cell contraction in rat cardiomyocytes depleted of intracellular magnesium. Cardiovasc Res 47, 116-123.

    Google Scholar 

  • Gutsche HU, Peterson LN, Levine DZ. 1984 In vivo evidence of impaired solute transport by the thick ascending limb in potassium-depleted rats. J Clin Invest 73, 908-916.

    Google Scholar 

  • Hall DA, Varney DM. 1980 Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest 66, 792-802.

    Google Scholar 

  • Hebert SC. 1996 Extracellular calcium-sensing receptor: Implications for calcium and magnesium handling in the kidney. Kidney Int 50, 2129-2139.

    Google Scholar 

  • Hebert SC, Brown EM. 1996 The scent of an ion: Calcium-sensing and its roles in health and disease. Curr Opin Nephrol Hypertens 5, 45-53.

    Google Scholar 

  • Hebert SC, Culpepper RM, Andreoli TE. 1981 NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am J Physiol 241, F432-F442.

    Google Scholar 

  • Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. 1989 Magnesium transport in Salmonella typhimurium: Genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171, 4742-4751.

    Google Scholar 

  • Husmann MJ, Fuchs P, Truttmann AC, Laux-End R, Mullis PE, Peheim E, Bianchetti MG. 1997 Extracellular magnesium depletion in pediatric patients with insulin-dependent diabetes mellitus. Miner Electrolyte Metab 23, 121-124.

    Google Scholar 

  • Imbert-Teboul M, Chabardes D, Montegut M, Clique A, Morel F. 1978 Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: Evidence for two separate sites of action. Endocrinology 102, 1254-1261.

    Google Scholar 

  • Kang HS, Kerstan D, Dai L, Ritchie G, Quamme GA. 2000 Aminoglycosides inhibit hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Can J Physiol Pharmacol 78, 595-602.

    Google Scholar 

  • Kelepouris E, Agus ZS. 1998 Hypomagnesemia: renal magnesium handling. Semin Nephrol 18, 58-73.

    Google Scholar 

  • Kh R, Khullar M, Kashyap M, Pandhi P, Uppal R. 2000 Effect of oral magnesium supplementation on blood pressure, platelet aggregation and calcium handling in deoxycorticosterone acetate induced hypertension in rats. J Hypertens 18, 919-926.

    Google Scholar 

  • Kreusser WJ, Kurokawa K, Aznar E, Sachtjen E, Massry SG. 1978 Effect of phosphate depletion on magnesium homeostasis in rats. J Clin Invest 61, 573-581.

    Google Scholar 

  • Kuntziger H, Amiel C, Roinel N, Morel F. 1974 Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium, and magnesium. Am J Physiol 227, 905-911.

    Google Scholar 

  • Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C. 1983 Developmental pattern of water and electrolyte transport in rat superficial nephron. Am J Physiol 245, F15-F21.

    Google Scholar 

  • Lennon EJ, Piering WF. 1970 A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man. J Clin Invest 49, 1458-1465.

    Google Scholar 

  • Luke RG, Wright FS, Fowler N, Kashgarian M, Giebisch GH. 1978 Effects of potassium depletion on renal tubular chloride transport in the rat. Kidney Int 14, 414-427.

    Google Scholar 

  • Mandon B, Siga E, Chabardes D, Firsov D, Roinel N, De Rouffignac C. 1993 Insulin stimulates Na+, Cl-, Ca2+, and Mg2+, transport in TAL of mouse nephron: Cross-potentiation with AVP. Am J Physiol 265, F361-F369.

    Google Scholar 

  • Massry SG, Coburn JW, Chapman LW, Kleeman CR. 1967a Effect of NaCl infusion on urinary Ca2+ and Mg2+ during reduction in their filtered loads. Am J Physiol 213, 1218-1224.

    Google Scholar 

  • Massry SG, Coburn JW, Chapman LW, Kleeman CR. 1967b Effect of NaCl infusion on urinary Ca2+ and Mg2+ during reduction in their filtered loads. Am J Physiol 213, 1218-1224.

    Google Scholar 

  • Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV. 2000 Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet 26, 265-266.

    Google Scholar 

  • Nair P, Nair RR. 2000 Alteration in cardiomyocyte mechanics by suboptimal levels of extracellular magnesium. Biol Trace Elem Res 73, 193-200.

    Google Scholar 

  • Okazaki R, Chikatsu N, Nakatsu M, Takeuchi Y, Ajima M, Miki J, Fujita T, Arai M, Totsuka Y, Tanaka K et al. 1999 A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia. J Clin Endocrinol Metab 84, 363-366.

    Google Scholar 

  • Pearce SH, Bai M, Quinn SJ, Kifor O, Brown EM, Thakker RV. 1996a Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest 98, 1860-1866.

    Google Scholar 

  • Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, Lewis-Barned N, McCredie D, Powell H, Kendall-Taylor P et al. 1996b A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335, 1115-1122.

    Google Scholar 

  • Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG. 1993 Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75, 1297-1303.

    Google Scholar 

  • Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, Hebert SC, Seidman CE, Seidman JG. 1994a Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 8, 303-307.

    Google Scholar 

  • Pollak MR, Chou YH, Marx SJ, Steinmann B, Cole DE, Brandi ML, Papapoulos SE, Menko FH, Hendy GN, Brown EM et al. 1994b Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest 93, 1108-1112.

    Google Scholar 

  • Poujeol P, Chabardes D, Roinel N, De Rouffignac C. 1976 Influence of extracellular fluid volume expansion on magnesium, calcium, and phosphate handling along the rat nephron. Pflugers Arch 365, 203-211.

    Google Scholar 

  • Poujeol P, Touvay C, Roinel N, de Rouffignac C. 1980 Stimulation of renal magnesium reabsorption by calcitonin in the rat. Am J Physiol 239, F524-F532.

    Google Scholar 

  • Quamme GA. 1981 Effect of furosemide on calcium and magnesium transport in the rat nephron. Am J Physiol 241, 340-347.

    Google Scholar 

  • Quamme GA. 1980 Effect of calcitonin on calcium and magnesium transport in rat nephron. Am J Physiol 238, E573-E578.

    Google Scholar 

  • Quamme GA. 1982 Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can J Physiol Pharmacol 60, 1275-1280.

    Google Scholar 

  • Quamme GA. 1997 Renal magnesium handling: new insights in understanding old problems. Kidney Int 52, 1180-1195.

    Google Scholar 

  • Quamme GA, Dai LJ. 1990 Presence of a novel influx pathway for Mg2+ in MDCK cells. Am J Physiol 259, C521-C525.

    Google Scholar 

  • Quamme GA, Dirks JH. 1980 Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am J Physiol 238, F187-F198.

    Google Scholar 

  • Reilly RF, Ellison DH. 2000 Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiol Rev 80, 277-313.

    Google Scholar 

  • Riccardi D, Park J, Lee WS, Gamba G, Brown EM, Hebert SC. 1995 Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 92, 131-135.

    Google Scholar 

  • Romani AMP, Maguire ME. 2001 Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells. BioMetals, 15, 271-283.

    Google Scholar 

  • Sachtjen E, Meyer WA, Massry SG. 1979 Evidence of magnesium secretion during phosphate depletion in the rat. Proc Soc Exp Biol Med 162, 416-419.

    Google Scholar 

  • Sasaki S, Imai M. 1980 Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch 383, 215-221.

    Google Scholar 

  • Shareghi GR, Agus ZS. 1982a Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J Clin Invest 69, 759-769.

    Google Scholar 

  • Shareghi GR, Agus ZS. 1982b Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J Clin Invest 69, 759-769.

    Google Scholar 

  • Shaul O, Hilgemann DW, de-Almeida-Engler J, Van Montagu M, Inz D, Galili G. 1999 Cloning and characterization of a novel Mg2+/H+ exchanger. Embo J 18, 3973-3980.

    Google Scholar 

  • Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A et al. 1997 Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17, 171-178.

    Google Scholar 

  • Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. 1996a Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13, 183-188.

    Google Scholar 

  • Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. 1996b Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14, 152-156.

    Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J et al. 1999 Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103-106.

    Google Scholar 

  • Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M et al. 1996c Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazidesensitive Na-Cl cotransporter. Nat Genet 12, 24-30.

    Google Scholar 

  • Snavely MD, Florer JB, Miller CG, Maguire ME. 1989 Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems. J Bacteriol 171, 4752-4760.

    Google Scholar 

  • Suki WN, Schwettmann RS, Rector FCJ, Seldin DW. 1968 Effect of chronic mineralocorticoid administration on calcium excretion in the rat. Am J Physiol 215, 71-74.

    Google Scholar 

  • Suki WNR. 1991 Renal transport of calcium, magnesium and phosphorus. In renner BM and Rector FC Jr. eds. The kidney. Philadelphia, PA: W.B. Saunders Co; Vol. 1, 380-423

    Google Scholar 

  • Suki WNR. 2000 Renal transport of calcium, magnesium and phosphorus. In Brenner BM ed. The kidney. Philadelphia, PA: W.B. Saunders Co; Vol. 1.

    Google Scholar 

  • Tashiro M, Konishi M, Iwamoto T, Shigekawa M, Kurihara S. 2000 Transport of magnesium by two isoforms of the Na+-Ca2+ exchanger expressed in CCL39 fibroblasts. Pflugers Arch 440, 819-827.

    Google Scholar 

  • van Itallie C, Rahner C, Anderson JM. 2001 Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107, 1319-1327.

    Google Scholar 

  • Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM et al. 1997 Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: Genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6, 1491-1497.

    Google Scholar 

  • Wen SF, Evanson RL, Dirks JH. 1970a Micropuncture study of renal magnesium transport in proximal and distal tubule of the dog. Am J Physiol 219, 570-576.

    Google Scholar 

  • Wen SF, Evanson RL, Dirks JH. 1970b Micropuncture study of renal magnesium transport in proximal and distal tubule of the dog. Am J Physiol 219, 570-576.

    Google Scholar 

  • Wong NL, Quamme GA, Dirks JH. 1986 Effects of acid-base disturbances on renal handling of magnesium in the dog. Clin Sci (Colch) 70, 277-284.

    Google Scholar 

  • Wong NL, Quamme GA, O'Callaghan TJ, Sutton RA, Dirks JH. 1980a Renal tubular transport in phosphate depletion: A micropuncture study. Can J Physiol Pharmacol 58, 1063-1071.

    Google Scholar 

  • Wong NL, Quamme GA, O'Callaghan TJ, Sutton RA, Dirks JH. 1980b Renal tubular transport in phosphate depletion: A micropuncture study. Can J Physiol Pharmacol 58, 1063-1071.

    Google Scholar 

  • Wong NL, Quamme GA, Sutton RA, Dirks JH. 1979 Effects of mannitol on water and electrolyte transport in the dog kidney. J Lab Clin Med 95, 683-692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, Ji., Romero, M.F. Mg2+ transport in the kidney. Biometals 15, 285–296 (2002). https://doi.org/10.1023/A:1016087017676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016087017676

Navigation