Skip to main content
Log in

A strain of Arthrobacter that tolerates highconcentrations of nitrate

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A gram-positive strain identified as Arthrobacter globiformis CECT 4500, tolerant to up to 1 M nitrate, was isolated from the grounds of a munitions factory. Under strict aerobic conditions, this bacterium used a wide variety of C-sources to obtain the energy required for growth, which took place when the nitrate concentration in the medium was below150 mM. Cells of this bacterium growing in the absence of nitrate were seen as individual cells or forming pairs,whereas cells grown in the presence of nitrate formed short filaments. With ethylene glycol as the C-source, optimal conditions for the full nitrate removal by Arthrobacter were established under laboratory conditions with wastewaters from the synthesis of dinitroethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abril MA, Michán C, Timmis KN & Ramos JL (1989) Regulator and enzyme specifities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 171: 6782–6790

    CAS  Google Scholar 

  • Bender RA & Friedrich B (1990) Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenesW70. J. Bacteriol. 172: 7256–7259

    CAS  Google Scholar 

  • Cali BM, Micca JL & Stewart V (1989) Genetic regulation of nitrate assimilation of Klebsiella pneumoniaeM5a1. J. Bacteriol. 171: 2666–2672

    CAS  Google Scholar 

  • Carter JP, Hsiao YH, Spiro S & Richardson DJ (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microbiol. 61: 2852–2858

    CAS  Google Scholar 

  • Clarkson WW, Ross BJB & Krishnamachari S (1991) Denitrification of high-strength industrial wastewaters. In: 45th Purdue Industrial Waste Conference Proceedings (pp 347–357). Lewis Publishers, Inc., Chelsea, Michigan

    Google Scholar 

  • Egli T (1991) On multiple-nutrient-limited growth on microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie van Leeuwenhoek 60: 225–234

    Article  CAS  Google Scholar 

  • Francis CW & Makin JB (1991) High nitrate denitrification in continuous flow-stirred reactors. Water Res. 11: 289–294

    Article  Google Scholar 

  • Guerrero MG, Vega JM & Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32: 169–204

    Article  CAS  Google Scholar 

  • Isken S & de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J. Bacteriol. 178: 6056–6058

    CAS  Google Scholar 

  • Krishnamachari S & Clarkson WW (1993) Nitrite accumulation in the effluents from high-strength denitrification of industrial wastewaters. In: 47th Purdue Industrial Waste Conference Proceedings (pp 383–392). Lewis Publishers, Inc., Chelsea, Michigan

    Google Scholar 

  • Lin JT, Goldman BS & Stewart V (1993) Structure of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniaeM5a1. J. Bacteriol. 175: 2370–2378

    CAS  Google Scholar 

  • Magasanik B & Neidhardt FC (1987) Regulation of carbon and nitrogen utilization in Escherichia coliand Salmonella typhimurium. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M & Umbarger HE (Eds) Cellular and Molecular Biology, Vol. 2 (pp 1321–1325). American Society of Microbiology, Washington D.C.

    Google Scholar 

  • Manzano C, Candau P, Gomez-Moreno C, Relimpio AM & Losada M (1976) Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol. Cell Biochem. 10: 161–168

    Article  CAS  Google Scholar 

  • Nakano MM, Yang F, Hardin P & Zuber P (1995) Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J. Bacteriol. 177: 573–579

    CAS  Google Scholar 

  • Nikaido H(1996) Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178: 5853–5859

    CAS  Google Scholar 

  • Ogawa KI, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P & Nakano MM (1995) The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J. Bacteriol. 177: 1409–1413

    CAS  Google Scholar 

  • Piñar G, Duque E, Haïdour A, Oliva JM, Sánchez-Barbero L, Calvo V & Ramos JL (1997) Removal of high concentrations of nitrate from industrial wastewater by bacteria. Appl. Environ. Microbiol. 63: 2071–2073

    Google Scholar 

  • Pipke R & Amrheim N (1988) Isolation and characterization of a mutant of Arthrobactersp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorous and nitrogen. Appl. Environ. Microbiol. 54: 2868–2870

    CAS  Google Scholar 

  • Pitt WW, Hancher CW & Patton BD (1981) Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor. Nucl. Chem. Waste Manag. 2: 57–70

    Article  CAS  Google Scholar 

  • Ramos JL, Guerrero MG & Losada M (1982) Optimization of conditions for ammonia photoproduction from nitrate by Anacystis nidulanscells. Appl. Environ. Microbiol. 44: 1013–1019

    CAS  Google Scholar 

  • Ramos JL, Haïdour A, Duque E, Piñar G, Calvo V & Oliva JM(1996) Metabolism of nitrate esters by a consortium of two bacteria. Nature/Biotechnology 14: 320–322

    CAS  Google Scholar 

  • Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haïdour A, Reyes F & Fernández-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 272: 3887–3890

    Article  CAS  Google Scholar 

  • Riet JV, Stouthamer AH & Planta RJ (1968) Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J. Bacteriol. 96: 1455–1464

    Google Scholar 

  • Rodriguez-Herva JJ, Ramos-González MI & Ramos JL (1996) The Pseudomonas putidapeptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope. J. Bacteriol. 178: 1699–1706

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Snell FD & Snell T (1949) Colorimetric methods of analysis, vol. 2 (pp 802–807). Van Nostrand Co. NY

    Google Scholar 

  • Stewart V (1988) Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52: 190–232

    CAS  Google Scholar 

  • Walker JR Jr, Helfrich MV & Donaldson TL (1989) Biodenitrification of uranium refinery wastewaters. Environ. Progress 8: 97–101

    CAS  Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, and Applications (pp 554–582). Springer-Verlag, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piñar, G., Ramos, J.L. A strain of Arthrobacter that tolerates highconcentrations of nitrate. Biodegradation 8, 393–399 (1997). https://doi.org/10.1023/A:1016080630009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016080630009

Navigation