Skip to main content
Log in

Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Cycle frequency affects both high-temperature oxidation behavior and the method in which the cyclic test is conducted. Several issues are discussed using examples taken from results for Ni-base and Fe-base, alumina-forming alloys. For alloys that form adherent scales, cycle frequency has little effect on results over extended test times ( ≥500 hr). When an alloy forms a less adherent scale, reducing the cycle time often has the expected effect of increasing the mass loss per unit exposure time; however, the opposite effect is observed in other cases. Low-frequency cycle experiments can be conducted with specimens contained in alumina crucibles. This has the important benefit of collecting the spalled oxide and measuring the “total” mass gain, equivalent to the metal wastage. However, higher-frequency-cyclic tests cannot be performed with crucibles because of the large thermal mass and thermal-shock problems of alumina crucibles. The test method and cycle frequency ultimately have a strong effect on lifetime predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Barrett and E. B. Evans, Am. Ceram. Soc. Bull. 52, 353 (1973).

    Google Scholar 

  2. C. E. Lowell and D. L. Deadmore, Oxid. Met. 14, 325 (1980).

    Google Scholar 

  3. R. Mevrel, Mater. Sci. Technol. 3, 531 (1987).

    Google Scholar 

  4. M. Schütze, Protective Oxides Scales and Their Breakdown (Wiley, Chichester, U.K., 1997).

    Google Scholar 

  5. H. Jonas and J. A. Golczewski, J. Nucl. Mater. 120, 272 (1984).

    Google Scholar 

  6. H. E. Evans, Mater. Sci. Technol. 4, 415 (1988).

    Google Scholar 

  7. P. Hancock and J. R. Nicholls, Mater. Sci. Technol. 4, 398 (1988).

    Google Scholar 

  8. M. J. Bennett, H. E. Evans, and D. A. Shores, Mater. High Temp. 12, 127 (1994).

    Google Scholar 

  9. J. Jedlinski, M. J. Bennett, and H. E. Evans, Mater. High Temp. 12, 169 (1994).

    Google Scholar 

  10. H. E. Evans, J. R. Nicholls, and S. R. J. Saunders, Solid State Phenomenon 41, 137 (1995).

    Google Scholar 

  11. J. R. Nicholls, H. E. Evans, and S. R. J. Saunders, Mater. High Temp. 14, 5 (1997).

    Google Scholar 

  12. C. E. Lowell, S. R. Levine, and S. J. Grisaffe, in Proc. 1974 Gas Turbine Materials in the Marine Enûironment Conference, MCIC Rep. No. 75-27 (Metals and Ceramics Information Center, Battelle, Columbus, OH, 1975), pp. 535–554.

    Google Scholar 

  13. C. E. Lowell, J. M. Smialek, and C. A. Barrett, in High-Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, TX, 1983), pp. 219–226.

    Google Scholar 

  14. J. L. Smialek, J. A Nesbitt, C. A. Barrett, and C. E. Lowell, in Cyclic Oxidation of High Temperature Materials, M. Schütze and W. J. Quadakkers, eds. (Institute of Materials, London, U.K., 1999), pp. 148–168.

    Google Scholar 

  15. “Comprehensive Program Plan for Advanced Turbine Systems,” Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy, Department of Energy, Report to Congress No. DOE/FE-0279, July 1993.

  16. W. P. Parks, E. E. Hoffman, W. Y. Lee, and I. G. Wright, J. Thermal Spray 6, 187 (1997).

    Google Scholar 

  17. B. A. Pint, P. F. Tortorelli, and I. G. Wright, in Cyclic Oxidation of High Temperature Materials, M. Schütze and W. J. Quadakkers, eds. (Institute of Materials, London, U.K., 1999), pp. 111–132.

    Google Scholar 

  18. B. A. Pint and I. G. Wright, manuscript in progress.

  19. I. G. Wright, B. A. Pint, W. Y. Lee, K. B. Alexander, and K. Prüßner, in High Temperature Surface Engineering, J. Nicholls and D. Rickerby, eds. (Institute of Materials, London, U.K., 1999), pp. 95–113.

    Google Scholar 

  20. B. A. Pint, Oxid. Met. 49, 531 (1998).

    Google Scholar 

  21. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner, and K. B. Alexander, Mater. Sci. Eng. A245, 201 (1998).

    Google Scholar 

  22. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mater. High Temp. 16, 1 (1999).

    Google Scholar 

  23. B. A. Pint, K. L. More, P. F. Tortorelli, W. D. Porter, and I. G. Wright, Mater. Sci. Forum 369-372, 411 (2001).

    Google Scholar 

  24. B. A. Pint, Mater. Sci. Forum 251-254, 397 (1997).

    Google Scholar 

  25. B. A. Pint and K. B. Alexander, J. Electrochem. Soc. 145, 1819 (1998).

    Google Scholar 

  26. I. G. Wright, B. A. Pint, and P. F. Tortorelli, Oxid. Met. 55, 333 (2001).

    Google Scholar 

  27. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mater. Corros. 47, 663 (1996).

    Google Scholar 

  28. A. W. Funkenbush, J. G. Smeggil, and N. S. Bornstein, Metall. Trans. 16A, 1164 (1985).

    Google Scholar 

  29. J. L. Smialek, D. T. Jayne, J. C. Schaeffer, and W. H. Murphy, Thin Solid Films 253, 285 (1994).

    Google Scholar 

  30. J. L. Smialek and B. K. Tubbs, Metall. Trans. 26A, 427 (1995).

    Google Scholar 

  31. G. H. Meier, F. S. Pettit, and J. L. Smialek, Werkst. Korros. 46, 232 (1995).

    Google Scholar 

  32. M. A. Smith, W. E. Frazier, and B. A. Pregger, Mater. Sci. Eng. A203, 388 (1995).

    Google Scholar 

  33. C. Sarioglu, C. Stinner, J. R. Blachere, N. Birks, F. S. Pettit, and G. H. Meier, in Superalloys 1996, R. D. Kissinger, D. J. Deye, D. L. Anton, A. D. Cetel, M. V. Nathal, T. M. Pollack, and D. A. Woodford, eds. (TMS, Warrendale, PA, 1996), pp. 71–80.

    Google Scholar 

  34. K. Prüßner and I. G. Wright, unpublished research, Oak Ridge National Laboratory, Oak Ridge, TN, 1998 (in Fig. 3).

  35. D. P. Moon, Mater. Sci. Technol. 5, 754 (1989).

    Google Scholar 

  36. A. Strawbridge and P. Y. Hou, Mater. High Temp. 12, 177 (1994).

    Google Scholar 

  37. B. A. Pint, Oxid. Met. 45, 1 (1996).

    Google Scholar 

  38. I. G. Wright and B. A. Pint, in Proc. SF2M 2000, Journées d'automne (Société Française de Métallurgie et de Matériaux, Paris, 2000), p. 86.

    Google Scholar 

  39. E. C. Dickey, B. A. Pint, K. B. Alexander, and I. G. Wright, J. Mater. Res. 14, 4531 (1999).

    Google Scholar 

  40. B. M. Warnes and D.C. Punola, Surf. Coating Technol. 94-95, 1 (1997).

    Google Scholar 

  41. Y. Zhang, W. Y. Lee, J. A. Haynes, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Mater. Trans. 30A, 2679 (1999).

    Google Scholar 

  42. J. L. Smialek, Metall. Trans. 9A, 309 (1978).

    Google Scholar 

  43. B. A. Pint, Oxid. Met. 48, 303 (1997).

    Google Scholar 

  44. C. S. Wukusick and J. F. Collins, Mater. Res. Std. 4, 6376 (1964).

    Google Scholar 

  45. F. A. Golightly, F. H. Stott, and G. C. Wood, J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  46. P. F. Tortorelli, B. A. Pint, E. Kenik, K. L. More, and I. G. Wright, Mater. Sci. Forum 369-372, 337 (2001).

    Google Scholar 

  47. B. A. Pint, P. F. Tortorelli, and I. G. Wright, ORNL Report to be published 2002, Oak Ridge, TN.

  48. F. H. Stott, F. A. Golightly, and G. C. Wood, Corros. Sci. 19, 889 (1979).

    Google Scholar 

  49. W. J. Quadakkers and M. J. Bennett, Mater. Sci. Technol. 10, 126 (1994).

    Google Scholar 

  50. W. J. Quadakkers and K. Bongartz, Werkst. Korros. 45, 232 (1994).

    Google Scholar 

  51. I. G. Wright, B. A. Pint, C. S. Simpson, and P. F. Tortorelli, Mater. Sci. Forum 251-254, 195 (1997).

    Google Scholar 

  52. I. G. Wright, B. A. Pint, L. M. Hall, and P. F. Tortorelli, eds., in Proc. EFC Workshop on Lifetime Modeling, Frankfurt, Germany, February 2001, in press.

  53. B. A. Pint, K. L. More, I. G. Wright, and P. F. Tortorelli, Mater. High Temp. 17, 165 (2000).

    Google Scholar 

  54. J. A. Nesbitt, J. Electrochem. Soc. 136, 1511–1517 and 1518-1527 (1989).

    Google Scholar 

  55. C. E. Lowell, C. A. Barrett, R. W., Palmer, J. V. Auping, and H. B. Probst, Oxid. Met. 36, 81 (1991).

    Google Scholar 

  56. J. A. Nesbitt, E. J. Vinarcik, C. A. Barrett, and J. Doychak, Mater. Sci. Eng. A153, 561 (1992).

    Google Scholar 

  57. K. S. Chan, N. S. Cheruvu, and G. R. Levant, ASME 97-GT-389, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, June, 1997.

  58. J. P. Wilber, M. J. Bennett, and J. R. Nicholls, Mater. High Temp. 17, 125 (2000).

    Google Scholar 

  59. G. Tatlock and H. Al Badairy, Oxid. Met. 53, 157 (2000).

    Google Scholar 

  60. H. Nickel, Y. Wouters, M. Thiele, and W. J. Quadakkers, Fresenius' J. Anal. Chem. 361, 540 (1998).

    Google Scholar 

  61. B. A. Pint and J. M. Rakowski, NACE Paper 00-259, Houston, TX, 2000.

  62. B. A. Pint, J. Regina, K. Prüßner, L. D. Chitwood, K. B. Alexander, and P. F. Tortorelli, Intermetallics 9, 735 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B., Tortorelli, P. & Wright, I. Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys. Oxidation of Metals 58, 73–101 (2002). https://doi.org/10.1023/A:1016064524521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016064524521

Navigation