Skip to main content

What Is the Value of Graphical Displays in Learning?

Abstract

The article reviews studies that explain the role of graphical displays in learning and synthesizes relevant findings into principles for effective graphical design. Three theoretical perspectives provide the framework that organizes the review: dual coding theory, visual argument, and conjoint retention. The three theories are compatible although they are based on different assumptions. Research suggests that graphics are effective learning tools only when they allow readers to interpret and integrate information with minimum cognitive processing. Learners' characteristics, such as prior subject-matter knowledge, visuospatial ability, and strategies, influence graphic processing and interact with graphical design to mediate its effects. Future research should investigate the interplay between display and learner characteristics and how graphical design can address individual differences in learning from graphics.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Anderson, J. R. (1995). Cognitive Psychology and its Implications, Freeman, New York

    Google Scholar 

  2. Atkinson, R. K., Levin, J. R., Kiewra, K. A., Meyers, T., Kim, S. I., Atkinson, L. A., Renandya, W. A., and Hwang, Y. (1999). Matrix and mnemonic text processing adjuncts: Comparing and combining their components. J. Educ. Psychol. 91(2): 342–357

    Google Scholar 

  3. Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. J. Educ. Psychol. 51(5): 267–272

    Google Scholar 

  4. Baddeley, A. D., and Logie, R. H. (1999). Working memory: The multiple component model. In Miyake, A., and Shah, P. (eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, Cambridge University Press, New York

    Google Scholar 

  5. Bauer, M. I., and Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychol. Sci. 4: 372–378

    Google Scholar 

  6. Bertin, J. (1983). Semiology of Graphics, The University ofWisconsin Press, Wisconsin

    Google Scholar 

  7. Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning. Educ. Res. 18(1): 32–42

    Google Scholar 

  8. Carroll, J.B. (1993). Human Cognitive Abilities:ASurvey of Factor-Analytic Studies, Cambridge University Press, New York

    Google Scholar 

  9. Clark, J. M., and Paivio, A. (1991). Dual coding theory and education. Educ. Psychol. Rev. 3(3): 149–210

    Google Scholar 

  10. Cox, R. (1999). Representation construction, externalized cognition and individual differences. Learn. Instruc. 9: 343–363

    Google Scholar 

  11. D'Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., and Farah, M. J. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35(5): 725–730

    Google Scholar 

  12. Dickson, L. A. S., Schrankel, P. S., and Kulhavy, R. (1988). Verbal and spatial encoding of text. Instruc. Sci. 17: 145–157

    Google Scholar 

  13. Dunston, P. J. (1992). A critique of graphic organizer research. Read. Res. Instruc. 31(2): 57–65

    Google Scholar 

  14. Finke, R. A., and Shepard, R. N. (1986). Visual functions of mental imagery. In Boff, K. R., Kaufman, L., and Thomas, J. P. (eds.), Handbook of Perception and Human Performance, Wiley, New York

    Google Scholar 

  15. Gerber, R., Boulton-Lewis, G., and Bruce, C. (1995). Children's understanding of graphic representations of quantitative data. Learn. Instruc. 5: 77–100

    Google Scholar 

  16. Goodman, N. (1968). The Languages of Art, Hackett, Indianapolis

    Google Scholar 

  17. Griffin, M. M., and Robinson, D. H. (2000). Role of mimeticism and spatiality in textual recall. Contemp. Educ. Psychol. 25: 125–149

    Google Scholar 

  18. Guthrie, J. T., Weber, S., and Kimmerly, N. (1993). Searching documents: Cognitive processes and deficits in understanding graphs, tables, and illustrations. Contemp. Educ. Psychol. 18: 186–221

    Google Scholar 

  19. Hawk, P. P. (1986). Using graphic organizers to increase achievement in middle school life science. Sci. Educ. 70(1): 81–87

    Google Scholar 

  20. Hegarty, M., Carpenter, P. A., and Just, M. A. (1991). Diagrams in the comprehension of scientific text. In Barr, R., Kamil, M. L., Mosenthal, P. B., and Pearson, P. D. (eds.), Handbook of Reading Research, Vol. 2, Longman, New York

    Google Scholar 

  21. Hegarty, M., and Just, M. A. (1989). Understanding machines from text and diagrams. In Mandl, H., and Levin, J. R. (eds.), Knowledge Acquisition From Text and Pictures, Elsevier Science, New York

    Google Scholar 

  22. Hegarty, M., and Just, M. A. (1993). Constructing mental models from text and diagrams. J. Mem. Lang. 32: 717–742

    Google Scholar 

  23. Johnson-Laird, P. N. (1998). Imagery, visualization, and thinking. In Hochberg, J. (ed.), Perception and Cognition at Century's End. Handbook of Perception and Cognition, Academic Press, New York

    Google Scholar 

  24. Jonides, J., and Smith, E. E. (1997). The architecture of working memory. In Rugg, M. D. (ed.), Cognitive Neuroscience, Taylor & Francis, London

    Google Scholar 

  25. Kenny, R. F. (1995). The generative effects of instructional organizers with computer-based interactive video. J. Educ. Comput. Res. 12(3): 275–296

    Google Scholar 

  26. Kiewra, K. A., Robinson, D. H., Christian, D., and McShane, A. (1988). Providing study notes: Relation of three types of notes for review. J. Educ. Psychol. 80: 595–597

    Google Scholar 

  27. Kosslyn, S. M. (1981). The medium and the message in mental imagery: A theory. Psychol. Rev. 88(1): 46–66

    Google Scholar 

  28. Kosslyn, S. M. (1988). Imagery in learning. In Gazzaniga, M. S. (ed.), Perspectives in Memory Research, MIT Press, Cambridge, MA, pp. 245–273

    Google Scholar 

  29. Kosslyn, S. M. (1989). Understanding charts and graphs. Appl. Cogn. Psychol. 3: 185–226

    Google Scholar 

  30. Kosslyn, S. M. (1994). Image and Brain. The Resolution of the Imagery Debate, The MIT Press, Cambridge, MA.

    Google Scholar 

  31. Kozma, R. B. (1991). Learning with Media. Rev. Educ. Res. 61(2): 179–211

    Google Scholar 

  32. Kulhavy, R. W., Stock, W. A., and Caterino, L. C. (1994). Reference maps as a framework for remembering text. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, Elsevier Science, New York, pp. 153–162

    Google Scholar 

  33. Kulhavy, R. W., Stock, W. A., and Kealy, W. A. (1993a). How geographic maps increase recall of instructional text. Educ. Technol. Res. Dev. 41(4): 47–62

    Google Scholar 

  34. Kulhavy, R. W., Stock, W. A., Peterson, S. E., Pridemore, D. R., and Klein, J. D. (1992). Using maps to retrieve text: A test of conjoint retention. Contemp. Educ. Psychol. 17: 56–70

    Google Scholar 

  35. Kulhavy, R. W., Stock, W. A., Woodard, K. A., and Haygood, R. C. (1993b). Comparing elaboration and dual coding theories: The case of maps and text. Contemp. Educ. Psychol. 106(4): 483–498

    Google Scholar 

  36. Kulhavy, R. W., Woodard, K. A., Haygood, R. C., and Webb, J. M. (1993c). Using maps to remember text: An instructional analysis. Br. J. Educ. Psychol. 63: 161–169

    Google Scholar 

  37. Lambiotte, J. G., Dansereau, D. F., Cross, D. R., and Reynolds, S. B. (1989). Multirelational semantic maps. Educ. Psychol. Rev. 1(4): 331–367

    Google Scholar 

  38. Larkin, J. H., and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Sci. 11: 65–99

    Google Scholar 

  39. Levin, J. R., Anglin, G. J., and Carney, R. N. (1987). On empirically validating functions of pictures in prose. In Willows, D. M., and Houghton, H. A. (eds.), The Psychology of Illustration, Vol. 1, Springer-Verlag, New York, pp. 51–85

    Google Scholar 

  40. Levin, J. R., and Mayer, R. E. (1993). Understanding illustrations in text. In Britton, B. K., Woodward, A., and Binkley, M. (eds.), Learning from textbooks. Theory and practice (pp. 95–114). Hillsdale, NJ: Lawrence Erlbaum Associates

    Google Scholar 

  41. Lewandowsky, S., and Behrens, J. T. (1999). Statistical maps and graphs. In Durso, F. T., Nickerson, R. S., Schvaneveldt, R. W., Dumais, S. T., Lindsay, D. S., Chi, M. T. H. (eds.). Handbook of Applied Cognition, Wiley, New York

    Google Scholar 

  42. Logie, R. H. (1995). Visuospatial Working Memory, Erlbaum, Hillsdale, NJ

    Google Scholar 

  43. Lohse, G., Walker, N., Biolsi, K., and Rueter, H. (1991). Classifying graphical information. Behav. Inf. Technol. 50(5): 419–436

    Google Scholar 

  44. Lowe, R. K. (1994). Selectivity in diagrams: Reading beyond the lines. Educ. Psychol. 14(4): 467–491

    Google Scholar 

  45. Lowe, R.K. (1996). Background knowledge and the construction of a situational representation from a diagram. Eur. J. Psychol. Educ. 11(4): 377–397

    Google Scholar 

  46. Mayer, R. E. (1989a). Models for understanding. Rev. Educ. Res. 59(1): 43–64

    Google Scholar 

  47. Mayer, R. E. (1989b). Systematic thinking fostered by illustrations in scientific text. J. Educ. Psychol. 81(2): 240–246

    Google Scholar 

  48. Mayer, R. E. (1994). Building mental representations from pictures and words. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, North-Holland, Amsterdam

    Google Scholar 

  49. Mayer, R. E., and Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual coding hypothesis. J. Educ. Psychol. 83: 484–490

    Google Scholar 

  50. Mayer, R. E., and Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. J. Educ. Psychol. 84: 444–452

    Google Scholar 

  51. Mayer, R. E., Bove, W., Bryman, A., Mars, R., and Tapanengco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. J. Educ. Psychol. 88(1): 64–73

    Google Scholar 

  52. Mayer, R. E., and Gallini, J. K. (1990). When is an illustration worth ten thousand words? J. Educ. Psychol. 82(4): 715–726

    Google Scholar 

  53. Mayer, R. E., and Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. J. Educ. Psychol. 90(2): 312–320

    Google Scholar 

  54. Mayer, R. E., and Sims, V.K. (1994). For whom is a picture worth a thousand words? Extensions of a dual coding theory of multimedia learning. J. Educ. Psychol. 86(3): 389–401

    Google Scholar 

  55. Mayer, R. E., Steinhoff, K., Bower, G., and Mars, R. (1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educ. Technol. Res. Dev. 43(1): 31–43

    Google Scholar 

  56. Miyake, A., and Shah, P. (1999). Toward unified theories of working memory: Emerging general consensus, unresolved theoretical issues, and future research directions. In Miyake, A., and Shah, P. (eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, Cambridge University Press, New York

    Google Scholar 

  57. Mokros, J. R., and Tinker, R. F. (1987). The impact of microcomputer-based labs on children's ability to interpret graphs. J. Res. Sci. Teaching 24(4): 369–383

    Google Scholar 

  58. Moreno, R., and Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. J. Educ. Psychol. 91(2): 358–368

    Google Scholar 

  59. Mousavi, S. Y., Low, R., and Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. J. Educ. Psychol. 87: 319–334

    Google Scholar 

  60. Narayanan, N. H., Suwa, M., and Motoda, H. (1995). Hypothesizing behaviors from device diagrams. In Glasgow, J., Narayanan, N. H., and Chandrasekaran, B. (eds.), Diagrammatic Reasoning: Cognitive and Computational Perspectives, AAAI Press, Menlo Park, CA.

    Google Scholar 

  61. National Research Council (1996). National Science Education Standards, National Academy Press, Washington, DC.

    Google Scholar 

  62. Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. In Treagust, D. F., Duit, R., and Fraser, B. J. (eds.), Improving teaching and learning in science and mathematics. New York: Teachers College Press

    Google Scholar 

  63. O'Donnell, A. (1993). Searching for information in knowledge maps and texts. Contemp. Educ. Psychol. 18: 222–239

    Google Scholar 

  64. Paivio, A. (1971). Imagery and Verbal Processes, Holt, Rinehart, and Winston, New York

    Google Scholar 

  65. Paivio, A. (1983). The empirical case for dual coding. In Yuille, J. (ed.), Imagery, Cognition, and Memory, Erlbaum, Hillsdale, NJ.

    Google Scholar 

  66. Paivio, A. (1990). Mental Representations. A Dual Coding Approach, Oxford University Press, New York

    Google Scholar 

  67. Paivio, A., Clark, J. M., and Khan, M. (1988). Effects on concreteness and semantic relatedness on composite imagery ratings and cued recall. Mem. Cogn. 16(5): 422–430

    Google Scholar 

  68. Paivio, A., and Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cogn. Psychol. 5: 176–206

    Google Scholar 

  69. Paivio, A., Walsh, M., and Bons, T. (1994). Concreteness effects on memory: When and why? J. Exp. Psychol. Learn. Mem. Cogn. 20(5): 1196–1204

    Google Scholar 

  70. Pea, R. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. J. Learn. Sci. 3(3): 285–299

    Google Scholar 

  71. Purnell, K. N., Solman, R. T., and Sweller, J. (1991). The effects of technical illustrations on cognitive load. Instruc. Sci. 20: 443–462

    Google Scholar 

  72. Pylyshyn, Z.W. (1973). What the mind's eye tells the mind's brain:Acritique of mental imagery. Psychol. Bull. 80: 1–24

    Google Scholar 

  73. Pylyshyn, Z.W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychol. Rev. 87: 16–45

    Google Scholar 

  74. Reisberg, D., and Heuer, F. (in press). Visuospatial images. In Shah, P., and Miyake, A. (eds.), Handbook of Visuospatial Thinking, Cambridge University Press, New York

  75. Rewey, K. L., Danserau, D. F., and Peel, J. L. (1991). Knowledge maps and information processing strategies. Contemp. Educ. Psychol. 16: 203–214

    Google Scholar 

  76. Rice, G. E. (1994). Need for explanations in graphic organizer research. Read. Psychol. 15(1): 39–67

    Google Scholar 

  77. Rieber, L. (1990a). Animation in computer-based instruction. Educ. Technol. Res. Dev. 38(1): 77–86

    Google Scholar 

  78. Rieber, L. P. (1990b). Using computer-animated graphics in science instruction with children. J. Educ. Psychol. 82(1): 135–140

    Google Scholar 

  79. Rieber, L. P. (1991a). Animation, incidental learning, and continuing motivation. J. Educ. Psychol. 83(3): 318–328

    Google Scholar 

  80. Rieber, L. P. (1991b). Effects of visual grouping strategies of computer-animated presentations on selective attention in science. Educ. Technol. Res. Dev. 39(4): 5–15

    Google Scholar 

  81. Rittschof, K. A., and Kulhavy, R. W. (1998). Learning and remembering from thematic maps of familiar regions. Educ. Technol. Res. Dev. 46(1): 19–38

    Google Scholar 

  82. Rittschof, K. A., Stock, W. A., Kulhavy, R.W., Verdi, M. P., and Doran, J. M. (1994). Thematic maps improve memory for facts and inferences: A test of the stimulus order hypothesis. Contemp. Educ. Psychol. 19(2): 129–142

    Google Scholar 

  83. Robinson, D. H. (1998). Graphic organizers as aids to text learning. Read. Res. Instruc. 37: 85–105

    Google Scholar 

  84. Robinson, D. H., Katayama, A. D., DuBois, N. F., and Devaney, T. (1998). Interactive effects of graphic organizers and delayed review of concept application. J. Exp. Educ. 67(1): 17–31

    Google Scholar 

  85. Robinson, D. H., Katayama, A. D., and Fan, A.-C. (1996). Evidence for conjoint retention of information encoded from spatial adjunct displays. Contemp. Educ. Psychol. 21: 221–239

    Google Scholar 

  86. Robinson, D. H., and Kiewra, K. A. (1995). Visual argument: Graphic organizers are superior to outlines in improving learning from text. J. Educ. Psychol. 87(3): 455–467

    Google Scholar 

  87. Robinson, D. H., and Molina, E. (2002). The relative involvement of visual and auditory working memory when studying adjunct displays. Contemp. Educ. Psychol. 27(1): 118–131

    Google Scholar 

  88. Robinson, D. H., Robinson, S. L., and Katayama, A. D. (1999). When words are represented in memory like pictures: Evidence for the spatial encoding of study materials. Contemp. Educ. Psychol. 24: 38–54

    Google Scholar 

  89. Robinson, D. H., and Schraw, G. (1994). Computational efficiency through visual argument: Do graphic organizers communicate relations in text too effectively? Contemp. Educ. Psychol. 19: 399–415

    Google Scholar 

  90. Robinson, D. H., and Skinner, C. H. (1996). Why graphic organizers facilitate search processes: Fewer words or computationally efficient indexing? Contemp. Educ. Psychol. 21: 166–180

    Google Scholar 

  91. Sadoski, M., Goetz, E. T., and Fritz, J. B. (1993). Impact of concreteness on comprehensibility, interest, and memory for text: Implications for dual coding theory and text design. J. Educ. Psychol. 85(2): 291–304

    Google Scholar 

  92. Scaife, M., and Rogers, Y. (1996). External cognition: How do graphical representations work? Int. J. Hum. Comput. Stud. 45: 185–213

    Google Scholar 

  93. Scevak, J. J., Moore, P. J., and Kirby, J. R. (1993). Training students to use maps to increase text recall. Contemp. Educ. Psychol. 18: 401–413

    Google Scholar 

  94. Schwartz, N. H., Ellsworth, L. S., Graham, L., and Knight, B. (1998). Accessing prior knowledge to remember text:Acomparison of advance organizers and maps. Contemp. Educ. Psychol. 23: 65–89

    Google Scholar 

  95. Schwartz, N. H., and Philippe, A. E. (1991). Individual differences in the retention of maps. Contemp. Educ. Psychol. 16: 171–182

    Google Scholar 

  96. Schwartz, N. H., and Wilkinson, W. K. (1992). Map-passage structural hierarchy and passage recall. Contemp. Educ. Psychol. 17: 356–336

    Google Scholar 

  97. Shah, P., and Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. J. Exp. Psychol. Gen. 124(1): 43–61

    Google Scholar 

  98. Shah, P., Mayer, R. E., and Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. J. Educ. Psychol. 91(4): 690–702

    Google Scholar 

  99. Shah, P., and Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. J. Exp. Psychol. Gen. 125(1): 4–27

    Google Scholar 

  100. Simmons, D. (1988). Effects of teacher-constructed pre-and post-graphic organizer instruction on sixth-grade science students' comprehension and recall. J. Educ. Res. 82(1): 15–21

    Google Scholar 

  101. Stock, W. A., Kulhavy, R. W., Peterson, S. E., Hancock, T. E., and Verdi, M. P. (1995). Mental representations of maps and verbal descriptions: Evidence they may affect text memory differently. Contemp. Educ. Psychol. 20: 237–256

    Google Scholar 

  102. Sweller, J., and Chandler, P. (1994). Why is some material difficult to learn. Cogn. Instruc. 12(3): 185–233

    Google Scholar 

  103. Sweller, J., Chandler, P., Tierney, P., and Cooper, M. (1990). Cognitive load as a factor in the structuring of technical material. J. Exp. Psychol. Gen. 119(2): 176–192

    Google Scholar 

  104. Sweller, J., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3): 251–296

    Google Scholar 

  105. Tukey, J. W. (1990). Data-based graphics: Visual displays in the decades to come. Stat. Sci. 5: 327–329

    Google Scholar 

  106. Tversky, B. (2001). Spatial schemas in depictions. In Gattis, M. (ed.), Spatial Schemas and Abstract Thought, MIT Press, Cambridge, MA.

    Google Scholar 

  107. Tversky, B. (1995). Cognitive origins of graphic productions. In Marchese, F. T. (ed.), Understanding Images, Springer-Verlag, New York

    Google Scholar 

  108. Verdi, M. P., Johnson, J. T., Stock, W. A., Kulhavy, R. W., and Whitman-Ahern, P. (1997). Organized spatial displays and texts: Effects of presentation order and display type on learning outcomes. J. Exp. Educ. 65(4): 303–317

    Google Scholar 

  109. Verdi, M. P., Kulhavy, R. W., Stock, W. A., Rittschof, K. A., and Johnson, J. T. (1996). Text learning using scientific diagrams: Implications for classroom use. Contemp. Educ. Psychol. 21: 487–499

    Google Scholar 

  110. Waller, R. (1981). Understanding network diagrams. Paper presented at the Annual Meeting of the American Educational Research Association, Los Angeles, April 1981

  111. Wiegmann, D. A., Dansereau, D. F., McCagg, E. C., Rewey, K. L., and Pitre, U. (1992). Effects of knowledge map characteristics on information processing. Contemp. Educ. Psychol. 17: 136–155

    Google Scholar 

  112. Willerman, M., and Harg, R. A. M. (1991). The concept map as an advance organizer. J. Res. Sci. Teaching 28(8): 705–711

    Google Scholar 

  113. Winn, W. (1987). Charts, graphs, and diagrams in educational materials. In Willows, D. M., and Houghton, H. A. (eds.), The Psychology of Illustration, Vol. 1, Springer-Verlag, New York, pp. 152–198

    Google Scholar 

  114. Winn, W. (1991). Learning from maps and diagrams. Educ. Psychol. Rev. 3(3): 211–247

    Google Scholar 

  115. Winn, W. (1994). Contributions of perceptual and cognitive processes to the comprehension of graphics. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, Elsevier Science, New York

    Google Scholar 

  116. Winn, W., Li, T.-Z., and Schill, D. (1991). Diagrams as aids to problem solving: Their role in facilitating search and computation. Educ. Technol. Res. Dev. 39(1): 17–29

    Google Scholar 

  117. Zacks, J., and Tversky, B. (1999). Bars and lines: A study of graphic communication. Mem. Cogn. 27(6): 1073–1079

    Google Scholar 

  118. Zhang, J. (1997). The nature of external representations in problem solving. Cogn. Sci. 21(2): 179–217

    Google Scholar 

  119. Zhang, J., and Norman, D. A. (1994). Representations in distributed cognitive tasks. Cogn. Sci. 18: 87–122.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vekiri, I. What Is the Value of Graphical Displays in Learning?. Educational Psychology Review 14, 261–312 (2002). https://doi.org/10.1023/A:1016064429161

Download citation

  • graphical displays
  • learning
  • cognitive processes