Skip to main content
Log in

Modeling DNA Electrophoresis in Microfluidic Entropic Trapping Devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Entropic trapping constitutes a novel scheme for separating various length strands of DNA using microfluidic chips etched to periodically varying depths. Deep portions of the chip, acting as entropic traps in a chain-length dependent manner, hinder DNA solute transport occurring under the influence of an externally-applied electric field. Together with knowledge of the average solute holdup time and device connectivity, as well as a lumped-parameter trap-scale (local) DNA transport model, generalized Taylor–Aris dispersion (macrotransport) theory for spatially periodic networks is employed to derive analytical expressions for a trio of chip-scale (global) transport process parameters, namely the solute dispersivity, number of theoretical plates, and separation resolution. These expressions are shown to furnish results that accord, at least qualitatively, with both experimental trends and data reported in the literature. In conjunction with simple macroscale experiments suggested by the theory, this coarse-grained model furnishes a paradigm for exploring the microscale phenomenon of entropic trapping in the context of the rational design of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Arvanitidou and D.A. Hoagland, Phys. Rev. Lett. 67, 1464-1466 (1991).

    Google Scholar 

  • M. Boguna, A.M. Berezhkovskii, and G.H. Weiss, Physica A 282, 475-485 (2000).

    Google Scholar 

  • H. Brenner and D.A. Edwards, Macrotransport Processes (Butterworth-Heinemann, Boston, 1993).

    Google Scholar 

  • M.D. Bryden and H. Brenner, J. Fluid Mech. 311, 343-359 (1996).

    Google Scholar 

  • K.D. Dorfman and H. Brenner, Phys. Rev. E 65, 1-18 (2002).

    Google Scholar 

  • D. Ertas, Phys. Rev. Lett. 80, 1548-1551 (1998).

    Google Scholar 

  • J.C. Giddings, Unified Separation Science (Wiley and Sons, NewYork, 1991).

    Google Scholar 

  • J.C. Giddings and H. Eyring, J. Phys. Chem. 59, 416-421 (1955).

    Google Scholar 

  • J. Han and H.G. Craighead, J. Vac. Sci. Technol. A 17, 2142-2147 (1999).

    Google Scholar 

  • J. Han and H.G. Craighead, Science 288, 1026-1029 (2000).

    Google Scholar 

  • J. Han, S.W. Turner, and H.G. Craighead, Phys. Rev. Lett. 83, 1688-1691 (1999).

    Google Scholar 

  • S.C. Jakeway, A.J. de Mello, and E.L. Russel, Fresenius J. Anal. Chem. 366, 525-539 (2000).

    Google Scholar 

  • J.P. Kutter, Trac-Trends Anal. Chem. 19, 352-363 (2000).

    Google Scholar 

  • A. Lehninger, D. Nelson, and M. Cox, Principles of Biochemistry (Worth Publishers, NewYork, 1993).

    Google Scholar 

  • L. Liu, P.S. Li, and S.A. Asher, Nature 397, 141-144 (1999).

    Google Scholar 

  • M. Muthukumar and A. Baumgartner, Macromolecules 22, 1937-1941 (1989a).

    Google Scholar 

  • M. Muthukumar and A. Baumgartner, Macromolecules 22, 1941-1946 (1989b).

    Google Scholar 

  • J.M. Nitsche and H. Brenner, J. Chem. Phys. 89, 7510-7520 (1988).

    Google Scholar 

  • G.I. Nixon and G.W. Slater, Phys. Rev. E 53, 4969-4980 (1996).

    Google Scholar 

  • J. Rousseau, G. Drouin, and G.W. Slater, Phys. Rev. Lett. 79, 1945-1948 (1997).

    Google Scholar 

  • M. Sahimi, H.T. Davis, and L.E. Scriven, Chem. Eng. Comm. 23, 329-341 (1983).

    Google Scholar 

  • G.W. Slater and S.Y. Wu, Phys. Rev. Lett. 75, 164-167 (1995).

    Google Scholar 

  • G.W. Slater, T.B.L. Kist, H.J. Ren, and G. Drouin, Electrophoresis 19, 1525-1541 (1998).

    Google Scholar 

  • D.L. Smisek and D.A. Hoagland, Science 248, 1221-1223 (1990).

    Google Scholar 

  • H.A. Stone and H. Brenner, Ind. Eng. Chem. Res. 38, 851-854 (1999).

    Google Scholar 

  • W.D. Volkmuth, T. Duke, M.C. Wu, R.H. Austin, and A. Szabo, Phys. Rev. Lett. 72, 2117-2120 (1994).

    Google Scholar 

  • G.H. Weiss, Aspects and Applications of the Random Walk (North-Holland, NewYork, 1994).

    Google Scholar 

  • G.H. Weiss, H. Sokoloff, S.F. Zakharov, and A. Chrambach, Electrophoresis 17, 1325-1332 (1996).

    Google Scholar 

  • E. Yarmola, P.P. Calabrese, A. Chrambach, and G.H. Weiss, J. Phys. Chem. B 101, 2381-2387 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Brenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorfman, K.D., Brenner, H. Modeling DNA Electrophoresis in Microfluidic Entropic Trapping Devices. Biomedical Microdevices 4, 237–244 (2002). https://doi.org/10.1023/A:1016056715762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016056715762

Navigation