Skip to main content
Log in

Fluconazole Distribution to the Brain: A Crossover Study in Freely-moving Rats Using In Vivo Microdialysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to determine if the microdialysis sampling technique is feasible to study the central nervous system distributional kinetics of a novel triazole antifungal agent, fluconazole, in an awake, freely-moving rat model, and to determine fluconazole distribution to the extracellular fluid (ECF) of the brain.

Methods. The relative recovery of the microdialysis probes (CMA-12) was determined in vitro and in vivo by retrodialysis using UK-54,373, a fluorinated analog of fluconazole. Sprague-Dawley rats received 10 mg/kg and 20 mg/kg fluconazole IV bolus doses in a crossover design, and brain extracellular fluid fluconazole concentrations were monitored using microdialysis and on-line HPLC analysis. The plasma fluconazole concentration vs. time data were determined using sequential blood sampling and HPLC analysis.

Results. There was no statistical difference between relative probe recoveries for both fluconazole and UK-54,373, either in vitro or in vivo, and probe recoveries did not change during the course of the in vivo crossover experiment. Fluconazole rapidly distributes into in the brain ECF and the average brain distribution coefficient (brain/plasma AUC ratio) was 0.60 ± 0.18 and was independent of dose. Plasma pharmacokinetic parameters were linear in the dose range studied.

Conclusions. Fluconazole rapidly reaches a distributional equilibrium between brain extracellular fluid and plasma, and the distribution to the brain is substantial and not dependent on dose over a two-fold range. Furthermore, the results indicate that microdialysis utilizing UK-54,373 as the in vivo retrodialysis probe calibrator is a feasible method to study the transport of fluconazole into the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Foulds, D. R. Brennan, C. Wajszczuk, A. Catanzaro, D. C. Garg, W. Knopf, M. Rinaldi, and D. J. Weidler. J. Clin. Pharmacol. 28:363–366 (1988).

    Google Scholar 

  2. G. P. Bodey. Clin. Infect. Dis. 14:s161–169.

  3. P. D. Hoeprich, J. L. Ingraham, E. Kleker, and M. J. Winship. J. Infect. Dis. 130:112–118 (1974).

    Google Scholar 

  4. S. Normark and J. Schonebeck. Antimicrob. Agents Chemother. 2:144–121 (1972).

    Google Scholar 

  5. S. G. Jezequel. J. Pharm. Pharmacol. 6:196–199 (1994).

    Google Scholar 

  6. A. J. Berry, M. G. Rinaldi, and J. R. Graybill. Antimicrob. Agents Chemother. 36:690–692 (1992).

    Google Scholar 

  7. R. M. Tucker, J. N. Galgiani, D. W. Denning, L. H. Hanson, J. R. Graybill, K. Sharkey, M. R. Eckman, C. Salemi, R. Libke, R. A. Klein, and D. A. Stevens. Rev. Infect. Dis. 12:S380–S389 (1990).

    Google Scholar 

  8. R. Allendoerfer, A. J. Marquis, M. G. Rinaldi, and J. R. Graybill. Antimicrob. Agents Chemother. 35:726–729 (1991).

    Google Scholar 

  9. F. C. Odds, S. L. Cheesman, and A. B. Abbott. J. Antimicrob. Chemother. 18:473–478 (1986).

    Google Scholar 

  10. E. M. Bailey, D. J. Krakovsky, and M. J. Rybak. Pharmacotherapy 10:146–153 (1990).

    Google Scholar 

  11. R. H. Haubrich, D. Haghighat, S. A. Bozzette, J. Tilles, J. A. McCutchan, and the California Collaborative Treatment Group. J. Infect. Dis. 170:238–242 (1994).

    Google Scholar 

  12. E. J. Anaissie, D. P. Kontoyiannis, C. Huls, S. E. Vartivarian, C. Karl, R. A. Prince, J. Bosso, and G. P. J. Infect. Dis. 172:599–602 (1995).

    Google Scholar 

  13. B. K. Malhotra, M. Lemaire, and R. J. Sawchuk. Pharm. Res. 11:1223–1232 (1994).

    Google Scholar 

  14. Q. Wang, H. Yang, D. W. Miller, and W. F. Elmquist. Biochem. Biophys. Res. Commun. 211:719–726 (1995).

    Google Scholar 

  15. K. H. Dykstra, A. Arya, D. M. Arriola, P. M. Bungay, P. F. Morrison and R. L. Dedrick. J. Pharmacol. Exp. Ther. 267:1227–1236 (1993).

    Google Scholar 

  16. C. M. Ervine and J. B. Houston. Pharm. Res. 11:961–965 (1994).

    Google Scholar 

  17. M. J. Humphrey, S. Jevons, and M. H. Tarbit. Antimicrob. Agents Chemother. 28:648–653 (1985).

    Google Scholar 

  18. R. A. Yokel, D. D. Allen, D. E. Burgio, and P. J. McNanara. J. Pharmacol. Toxicol. Meth. 27:135–142 (1992).

    Google Scholar 

  19. L. Stahle, S. Segersvard, and U. Ungerstedt. J. Pharmacol. Meth. 25:41–52 (1991).

    Google Scholar 

  20. Y. Wang, S. L. Wong, and R. J. Sawchuk. Pharm. Res. 10:1411–1419 (1993).

    Google Scholar 

  21. I. Westergren, B. Nystrom, A. Hamberger, and B. B. Johansson. J. Neurochem. 64:229–234 (1995).

    Google Scholar 

  22. M. E. Morgan, D. Singhal, and B. D. Anderson. J. Pharmacol. Exper. Ther. 277:1167–1176 (1996).

    Google Scholar 

  23. M. Fontaine, Q. Wang, H. Yang, and W. F. Elmquist. Pharm. Res. 12:S-406 (1995).

    Google Scholar 

  24. J. R. Perfect and D. T. Durack. J. Antimicrob. Chemother. 16:81–86 (1985).

    Google Scholar 

  25. C. A. S. Arndt, T. J. Walsh, C. L. McCully, F. M. Balis, P. A. Pizzo, and D. G. Poplack. J. Infect. Dis. 157:178–180 (1988).

    Google Scholar 

  26. F. Thaler, B. Bernard, M. Tod, C. P. Jedynak, O. Petitjean, P. Derome and P. Loirat. Antimicrob. Agents Chemother. 39:1154–1156 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Wang, Q. & Elmquist, W.R. Fluconazole Distribution to the Brain: A Crossover Study in Freely-moving Rats Using In Vivo Microdialysis. Pharm Res 13, 1570–1575 (1996). https://doi.org/10.1023/A:1016048100712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016048100712

Navigation