Geotechnical & Geological Engineering

, Volume 20, Issue 3, pp 235–259 | Cite as

Practical pedotransfer functions for estimating the saturated hydraulic conductivity

  • M. Mbonimpa
  • M. Aubertin
  • R. P. Chapuis
  • B. Bussière

Abstract

The saturated hydraulic conductivity k is one of the most important and widely used geotechnical parameters, commonly involved in a diversity of applications. The value of k depends on many factors, which can be divided into three classes: properties of the fluid, pore size distribution, and characteristics of the solid surfaces. Because the latter two are not necessarily constant within a given deposit, the hydraulic conductivity may vary significantly in space. Engineers and scientists need indications about how changing factors may affect the actual k value. In this paper, the authors propose some simple expressions, based on pedologic properties, to estimate the value of k. Using experimental results of their own and taken from the literature, it is shown that the proposed pedotransfer functions can be used for quickly estimating the k value for granular and plastic/cohesive soils. Such expressions can be employed, with a useful chart format, for the preliminary design phase of a project, and also for estimating the range of k values to be anticipated within a given deposit.

consistency grain size granular soils hydraulic conductivity pedotransfer functions plastic/cohesive soils porosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, L.R., Naney, J.W., Green, R.E. and Nielsen, D.R. (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects on land management, Soil Science Society of America Journal 48, 699–702.Google Scholar
  2. Al-Tabbaa, A. and Wood, D.M. (1987) Some measurements of the permeability of kaolin, Géotechnique 37(4), 499–503.Google Scholar
  3. Aubertin, M., Bussiè re, B. and Chapuis, R.P. (1996) Hydraulic conductivity of homogenized tailings from hard rock mines, Canadian Geotechnical Journal 33(3), 470–482.Google Scholar
  4. Aubertin, M., Chapuis, R.P., Aachib, M., Bussiè re, B., Ricard, J.F. and Tremblay, L. 1995. Évaluation en laboratoire de barriè res sè ches construites à partir de ré sidus miniers. É cole Polytechnique de Montré al, MEND Project 2.22.2a, CANMET, Ottawa, 164 pages.Google Scholar
  5. Bear, J. (1972) Dynamics of Fluids in Porous Media, Dover Publications Inc., New York.Google Scholar
  6. Benson, H.C. and Trast, J.M. (1995) Hydraulic conductivity of thirteen compacted clays, Clays and Clay Minerals 43(6), 669–681.Google Scholar
  7. Beyer, W. (1964) Zur Bestimmung der Wasserdurchlä ssigkeit von Kiesen und Sanden aus der Kornverteilungskurve, WWT, 14, Jahrgang, Heft 6.Google Scholar
  8. Budhu, M. (1985) The effect of clay content on liquid limit from a fall cone and the British cup device, Technical Note, Geotechnical Testing Journal 8(2), 91–95.Google Scholar
  9. Bussière, B. (1993) É valuation des proprié té s hydrogé ologiques des ré sidus miniers utilisé s comme barriè res de recouvrement, Mémoire de Ma \(\hat \imath \) trise, Dé partement du Gé nie Mineral, É cole Polytechnique de Montré al.Google Scholar
  10. Carman, P.C. (1956) Flow of Gas Through Porous Media, Academic Press, Inc., New York.Google Scholar
  11. Chapuis, R.P. (2002) The 2000 R.M. Handy Lecture: Full-scale hydraulic performance of soilbentonite and compacted clay liners, Canadian Geotechnical Journal 39(2): 417–439.Google Scholar
  12. Chapuis, R.P. and Aubertin, M. (2001) Evaluation of Kozeny-Carman equation to predict the hydraulic conductivity of soils, Submitted for publication to the Canadian Geotechnical Journal.Google Scholar
  13. Chapuis, R.P. and Lé garé, P.P. (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of aggregates and mineral filler on asphalt mixture performance, American Society for Testing and Materials, Special Technical Publication 1147, 177–186.Google Scholar
  14. Chapuis, R.P. and Montour, I. (1992) É valuation de l'é quation de Kozeny-Carman pour pré dire la conductivité hydraulique, Proceedings, 45ième Conférence Canadienne de Géotechnique. Toronto, Ontario, 78-1-78-10.Google Scholar
  15. Chapuis, R.P., Baass, K. and Davenne, L. (1989) Granular soils in rigid-wall permeameters: method for determining the degree of saturation, Canadian Geotechnical Journal 26(1), 71–79.Google Scholar
  16. Child, E.C. and Collis-Georges, N. (1950) The permeability of porous materials, Proceedings of the Royal Society of London, Series A 201, 392–405.Google Scholar
  17. Chin, D.A. (2000) Water-Resources Engineering, Prentice Hill, Upper Saddle River, N.J.Google Scholar
  18. Daniel, D.E. and Benson, C.M. (1990) Water content-density criteria for compacted soil liners, Journal of Geotechnical Engineering, ASCE 116(GT12), 1811–1930.Google Scholar
  19. de Campos, T.M.P., Alves, M.C.M. and Azevado, R.F. (1994) Laboratory settling and consolidation of neutralized red mud, 1st International Congress on Environmental Geotechnics, Edmonton, pp. 461–466.Google Scholar
  20. De Wiest, R.J.M. (1969) Flow Through Porous Media, Academic Press, New York.Google Scholar
  21. Farrar, D.M. and Coleman, J.D. (1967) The correlation of surface area with other properties of 19 British clay soils, Journal of Soil Science 18(1), 118–124.Google Scholar
  22. Fetter, C.W. (2001) Applied Hydrogeology, 4th Edition, Upper Saddle River, N.J, Prentice Hall.Google Scholar
  23. Fredlund, D.G., Xing, A. and Huang, S. (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal 31(4), 533–546.Google Scholar
  24. Freeze, A. (1994) Henry Darcy and the fountains of Dijon, Ground Water 32(1), 23–30.Google Scholar
  25. Fujiyasu, Y. and Fahey, M. (2000). Experimental Study of evaporation from saline tailings, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 126(1), 18–27.Google Scholar
  26. Fukushima, S. and Ishii, T. (1986) An experimental study on the influence of confining pressure on permeability coefficients of filldam core materials, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 26(4), 32–46.Google Scholar
  27. Goldin, A.L. and Rasskazov, L.N. (1992) Design of Earth Dams, Geotechnica 2, Ed. A.A. Balkema.Google Scholar
  28. Harr, M.E. (1999) Groundwater and seepage: accounting for variability. In The Handbook of Groundwater Engineering, Delleur, J.W. (ed.). CRC Press, Boca Raton, Boston, London, New York, Washington D.C., Chap.4.Google Scholar
  29. Hatanaka, M., Uchida, A. and Takehara, N. (1997) Permeability characteristics of highquality undisturbed sands measured in a triaxial cell, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 37(3), 129–135.Google Scholar
  30. Hazen, A. (1911) Discussion of dams on sand foundations, Transactions, American Society of Civil Engineers 73, 199–203.Google Scholar
  31. Holtz, R.D. and Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering, Prentice-Hall, Engelwood Cliffs.Google Scholar
  32. Hubbert, M.K. (1956) Darcy's law and the field equations of flow of underground fluids, Transactions, American Institute of Mining and Metallurgical Engineering 207, 222–239.Google Scholar
  33. Ková cs, G. (1981) Seepage Hydraulics, Elsevier Science Publishers, Amsterdam.Google Scholar
  34. Kozeny, J. (1953) Hydraulics, Elsevier Scientific Publication, Amsterdam.Google Scholar
  35. Lambe, T.W and Whitman, R.V. (1979) Soil Mechanics, SI version, John Wiley and Sons, New York.Google Scholar
  36. Leroueil, S. and Le Bihan, J.-P. (1996) Liquid limits and fall cones, Canadian Geotechnical Journal 33(5), 793–798.Google Scholar
  37. Leroueil, S., Bouclin, G., Tavenas, F., Bergeron, L. and La Rochelle, P. (1990) Permeability anisotropy of natural clays as a function of strain, Canadian Geotechnical Journal 27(5), 568–579.Google Scholar
  38. Locat, J., Lefebvre, G. and Ballivy, G. (1984) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada, Canadian Geotechnical Journal 21(3), 530–540.Google Scholar
  39. Loudon, A.G. (1952) The computation of permeability from simple soil tests, Géotechnique 3(3), 165–183.Google Scholar
  40. Marhall, T.J., Holmes, J.W. and Rose, C.W. (1996) Soil physics, 3rd Edition, Cambridge University Press, Cambridge, UK.Google Scholar
  41. Masch, F.D. and Denny, K.J. (1966) Grain size distribution and its effect on the permeability of unconsolidated sands, Water Resources Research 2(4), 665–677.Google Scholar
  42. Mbonimpa, M. (1998) Injizierfä higkeit von Feinstbindemittelsuspensionen zur Abdichung von Lockergesteinen, Mitteilungen des Instituts von Grundbau, Bodenmechanik und Energiewasserbau (IGBE), Universitä t Hannover, 50.Google Scholar
  43. Mesri, G. and Olson, R.E. (1971) Mechanisms controlling the permeability of clays, Clays and Clay Minerals 19, 151–158.Google Scholar
  44. Michaels, A.S. and Lin, C.S. (1954) Permeability of kaolinite, Industrial and Engineering Chemistry 46, 1239–1246.Google Scholar
  45. Mitchell, J.K., Hooper, D.R. and Campanella, R.G. (1965) Permeability of compacted clay, ASCE Journal of Soil Mechanics and Foundation Engineering Division 91 (SM4), 41–65.Google Scholar
  46. Mualem, Y. (1986) Hydraulic Conductivity of Unsaturated Soils: Prediction and Formulas, in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd edn, Klute, A. (ed.). Agronomy Monograph No. 9, American Society of Agronomy, Madison, Wis. pp. 799–823.Google Scholar
  47. Muhunthan, B. (1991) Liquid limit and surface area of clay, Géotechnique 41(1), 135–138.Google Scholar
  48. Nagaraj, T.S, Pandian, N.S. and Narasimha Raju, P.S.R. (1991) An approach for prediction of compressibility and permeability behaviour of sand bentonite mixes, Indian Geotechnical Journal 21(3), 271–282.Google Scholar
  49. Nagaraj, T.S., Pandian, N.S. and Narasimha Raju, P.S.R. (1994) Stress-state-permeability relations for overconsolidated clays, Technical Note, Géotechnique 44(2), 349–352.Google Scholar
  50. Raymond, G.P. (1966) Laboratory consolidation of some normally consolidated soils, Canadian Geotechnical Journal III(4), 217–234.Google Scholar
  51. Rowe, R.K., Armstrong, M.D. and Cullimore, D.R. (2000) Particle size and clogging of granular media permeated with leachate, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 126(9), 775–7860.Google Scholar
  52. Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982) Permeability of normally consolidated soils, Journal of the Geotechnical Engineering Division, ASCE 118(GT6), 835–850.Google Scholar
  53. Schaap, M.G. and Leij, F.J. (1998) Database-related accuracy and uncertainty of pedotransfer functions, Soil Science 163(10), 765–779.Google Scholar
  54. Shepherd, R.G. (1989) Correlations of permeability and grain size, Ground Water 27(5), 633–638.Google Scholar
  55. Sherrard, J.L., Dunnigan, L.P. and Talbot, J.R. (1984) Basic properties of sand and gravel filters, Journal of Geotechnical Engineering, ASCE 110(6), 684–700.Google Scholar
  56. Sherwood, P.T. and Ryley, M.D. (1970) An investigation of a cone-penetrometer method for the determination of the liquid limit, Géotechnique 20(2), 203–208.Google Scholar
  57. Sitharam, T.G., Sivapullaiah, P.V. and Subba Rao, K.S. (1995) Shrinkage behaviour of compacted unsaturated soils/Rétraction des sols compactés non saturés, in Unsaturated soils/ Sols non saturés, Vol. I, Alonso, E.E. and Delage, P. (eds). A.A. Balkema, Rotterdam, Brookfield, pp. 195–200.Google Scholar
  58. Sivapullaiah, P.V., Sridharan, A. and Stalin, V.K. (2000) Hydraulic conductivity of bentonite sand mixtures, Canadian Geotechnical Journal 37(2), 406–413.Google Scholar
  59. Sperry, M.S. and Pierce, J.J. (1995) A model for estimating the hydraulic conductivity of granular material based on grain size, and porosity, Ground Water 33(6), 892–898.Google Scholar
  60. Sridharan, A., Nagaraj, H.B. and Prakash, K. (1999) Determination of the plasticity index from flow index, Technical Note, Geotechnical Testing Journal 22(2), 175–181.Google Scholar
  61. Sridharan, A., Rao, S.M. and Murthy, N.S. (1986) Liquid limit of Montmorillonite soils, Technical Note, Geotechnical Testing Journal 9(3), 156–159.Google Scholar
  62. Tan, S.A. (1989) A simple automatic falling head permeameter, Technical Note, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 29(1), 161–164.Google Scholar
  63. Tanaka, H. and Locat, J. (1999) A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour, Canadian Geotechnical Journal 36(3), 493–508.Google Scholar
  64. Taylor, D.W. (1948) Fundamentals of Soil Mechanics, John Wiley and Sons, New York.Google Scholar
  65. Tieje, O. and Hennings, V. (1996) Accuracy of the saturated hydraulic conductivity prediction by pedotransfer functions compared to the variability within FAO textural classes, Geoderma 69, 71–84.Google Scholar
  66. Venkataraman, P. and Rao, P.R.M. (1998) Darcian, transitional, and turbulent flow through porous media, Journal of Hydraulic Engineering 124(8), 840–846.Google Scholar
  67. Vuković, M. and Soro, A. (1992) Determination of hydraulic conductivity of porous media from grain-size composition, Water Resources Publications, Littleton, Colorado.Google Scholar
  68. Watabe, Y., Leroueil, S. and Le Bihan, J.-P. (2000) Influence of compaction conditions on pore size distribution and saturated hydraulic conductivity, Canadian Geotechnical Journal 37(6), 1184–1194.Google Scholar
  69. Wetzel, A. (1990) Interrelationships between porosity and other geotechnical properties of slowly deposited, fine-grained marine surface sediments, Marine Geology 92, 105–113.Google Scholar
  70. Wright, S.P., Walden, P.J., Sangha, C.M. and Langdon, N.J. (1996) Observations on soil permeability, moulding moisture content and dry density relationships, Quarterly Journal of Engineering Geology 29, 249–255.Google Scholar
  71. Yong, R.P., Mohamed, A.M.O. and Warkentin, B.P. (1992) Principles of contaminant transport in soils, Elsevier, Amsterdam.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Mbonimpa
    • 1
  • M. Aubertin
    • 1
  • R. P. Chapuis
    • 1
  • B. Bussière
    • 2
  1. 1.Department of Civil, Geological and Mining EngineeringÉcole Polytechnique de MontréalMontrealCanada
  2. 2.Department of Applied SciencesUniversité du Québec en Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada

Personalised recommendations