Skip to main content
Log in

A New Test Method for Determining Biodegradation of Plastic Material Under Controlled Aerobic Conditions in a Soil-Simulation Solid Environment

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new test method is described for assessing biodegradation of plastic material under simulated soil conditions. An inert substrate can be activated with soil extract and nutrient and used in place of soil in biodegradation tests. The biodegradation level is evaluated by determining the carbon dioxide (CO2) production released by the test reactors. Effects of substrate nature, solution pH, nutrient composition, soil extract concentration, and activation duration on CO2 production were investigated, and the experimental conditions were optimized. Results obtained with cellulose showed a biodegradation rate of 80% within 28 days. Moreover, with this kind of substrate, reaction products and residues can be easily extracted and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Decriaud-Calmon, V. Bellon-Maurel, and F. Silvestre (1998) Adv. Polym. Sci. 135, 307-226.

    Google Scholar 

  2. R. F. Müller, J. Augusta, T. Walter, and H. Widdecke (1994) in Y. Doi and K. Fukuda (Eds.), The Development and Modification of Some Special Test Methods and Progress in Standardisation of Test Methods in Germany, Elsevier Science BV, Amsterdam, 237-249.

    Google Scholar 

  3. M. Van der Zee, L. Sistma, H. Tournois, and D. De Wit (1994) Chemosphere 28, 1757-1771.

    Google Scholar 

  4. European Committee for Normalization (ECN) TC261/SC4/N42, Brussels, Belgium. (1998) Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Packing Materials Under Aqueous Medium-Method by Analysis of Released Carbon Dioxide.

  5. Organization for Economic Cooperation and Development (OECD) 301B, Paris, France. (1992) Guidelines For testing of Chemicals.

  6. American Society for Technology and Materials (ASTM), Philadelphia, USA. (1992) D5210-92 Standard Test Method for Determining Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge.

  7. ASTM (1992) D5209-92 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge.

  8. H. Eya, N. Iwaki, and Y. Otsuji (1994) in Y. Doi and K. Fukuda (Eds.), A Study of Methods of Testing Biodegradable Plastics in Soil: Aerobic and Anaerobic Gas Evolution Test—Petri Dish Test in Various Soils, Elsevier Science BV, Amsterdam, 337-344.

    Google Scholar 

  9. G. T. G. Keursten and P. H. Groenevelt (1996) Biodegradation 7, 329-333.

    Google Scholar 

  10. M. Kimura, K. Toyota, M. Iwatsuki, and H. Sawada (1994) in Y. Doi and K. Fukuda (Eds.), Effects of Soil Conditions on Biodegradation of Plastics and Responsible Microorganisms, Elsevier Science BV, Amsterdam, 92-106.

    Google Scholar 

  11. A. V. Yabannavar and R. Bartha (1994) Appl. Environ. Microbiol. 60, 3608-3614.

    Google Scholar 

  12. J. D. Gu, D. Eberiel, S. P. McCarthy, and R. A. Gross (1993a) J. Environ. Polym. Degrad. 1, 281-291.

    Google Scholar 

  13. J. D. Gu, D. T. Eberiel, MacCarthy, and R. A. Gross (1993b) J. Environ. Polym. Degrad. 1, 143-153.

    Google Scholar 

  14. J. D. Gu, S. W. Yang, R., D. Eberiel, and S. P. McCarthy (1994) J. Environ. Polym. Degrad. 2, 129-135.

    Google Scholar 

  15. U. Pagga, D. B. Beimborn, J. Boelens, and B. De Wilde (1995) Chemosphere 31, 4475-4487.

    Google Scholar 

  16. S. Grima, V. Bellon-Maurel, P. Feuilloley, and F. Silvestre (2002) J. Polym. Environ. 8(4)

  17. G. Bellia, M. Tosin, G. Floridi, and F. Degli-Innocenti (1999) Polym. Degrad. Stab. 66, 65-79.

    Google Scholar 

  18. M. Tosin, F. Degli-Innocenti, and C. Bastioli (1998) J. Environ. Polym. Degrad. 6, 79-90.

    Google Scholar 

  19. F. Degli-Innocenti, G. Bellia, M. Tosin, A. Kapanen, and M. Itävaara (2001) Polym. Degrad. Stab. 73, 101-106.

    Google Scholar 

  20. G. Bellia, M. Tosin, F. Degli-Innocenti (2000) Polym. Degrad. Stab. 69, 113-120.

    Google Scholar 

  21. ISO TC61/SC5/N928 (1999) Determination of the Ultimate Aerobic Biodegradation of Plastic Materials Under Simulated Composting Conditions in an Inert, Carbon-Free Fixed Bed: Method by Analysis of Evolved Carbon Dioxide.

  22. ECN TC 249 WG 9 N3 (1999) Plastics-Evaluation of the Aerobic Biodegradability of Plastic Materials in a Mineral Solid Medium.

  23. G. Hanlon (2000) Grass and Leaf Compost Testing Program and Use Guide, City of Lincoln, Public Works/Utilities Department Lincoln, http://www.ci.lincoln.ne.us/city/pworks/waste/recycle/index.htm.

    Google Scholar 

  24. R. N. Sturm (1973) J. Oil Chem. Soc. 50, 159-167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Grima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grima, S., Bellon-Maurel, V., Silvestre, F. et al. A New Test Method for Determining Biodegradation of Plastic Material Under Controlled Aerobic Conditions in a Soil-Simulation Solid Environment. Journal of Polymers and the Environment 9, 39–48 (2001). https://doi.org/10.1023/A:1016044504688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016044504688

Navigation