Skip to main content
Log in

Effect of the Nature of a Sodium-Conducting Solid Electrolyte on the Impedance of Its Interface with the SmCo0.8Ti0.2O3 Oxide Electrode in an Oxygen Atmosphere

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Impedance spectroscopy is employed for studying the behavior of the interface of the SmCo0.8Ti0.2O3 semiconducting oxide electrode with a sodium-conducting solid electrolyte (Na+–SE) in atmospheres of argon and oxygen. Compounds with the susceptibility to hydration decreasing in the row Na5TbSi4O12 → Na3Zr2Si2PO12 → Na3Sc2(PO4)3 are used as the Na+–SE. Only the systems containing the Na5TbSi4O12 solid electrolyte, the grain surfaces of which acquire boundary layers formed by hydration products, are sensitive to oxygen. The exchange current of the electrode reaction O2 (g) + e ⇆ O2 increases from 1.8 to 19 mA/cm2 in the temperature interval 250–300°C. The systems with Na+–SE that are not prone to hydration remain inactive in the oxygen atmosphere probably due to quick blocking of the active centers by nonconducting products of the secondary chemical reaction Na+ + O2 → NaO2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ohbayashi, H., Kudo, T., and Gejo, N., Jpn. J. Appl. Phys., 1974, vol. 13, p. 1.

    Google Scholar 

  2. Yamamoto, O., Takeda, Y., Kanno, R., and Noda, M., Solid State Ionics, 1987, vol. 22, p. 241.

    Google Scholar 

  3. Takeda, Y., Kanno, R., Noda, M., and Yamamoto, O., J. Electrochem. Soc., 1987, vol. 134, p. 2656.

    Google Scholar 

  4. Meadowcroft, D.B., Nature, 1970, vol. 226, p. 847.

    Google Scholar 

  5. Zhang, H.M., Shimizu, Y., Teraoka, Y., et al., J. Catal., 1990, vol. 121, p. 432.

    Google Scholar 

  6. Tkacheva, N.S., Korosteleva, A.I., and Bukun, N.G., Elektrokhimiya, 1998, vol. 34, p. 427.

    Google Scholar 

  7. Grafov, B.M. and Ukshe, E.A., Elektrokhimiya, 1974, vol. 10, p. 1875.

    Google Scholar 

  8. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (The Solid Electrolytes), Moscow: Nauka, 1977.

    Google Scholar 

  9. De Jonghe, L., Buechele, A., and Armand, M., Solid State Ionics, 1983, vol. 9-10, p. 165.

    Google Scholar 

  10. McHale, A.E., Kilner, J.A., and Steel, B.C.H., Transport in Nonstoichiometric Compounds, Simkovich, G., Ed., New York: Plenum, 1985, p. 217.

    Google Scholar 

  11. Bukun, N.G., Ukshe, A.E., and Ukshe, E.A., Elektrokhimiya, 1993, vol. 29, p. 110.

    Google Scholar 

  12. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (Electrochemical AC Circuits), Moscow: Nauka, 1973.

    Google Scholar 

  13. Glemser, O. and Harter, E., Z. Anorg. Allg. Chem., 1956, vol. 283, p. 111.

    Google Scholar 

  14. Efremov, V.A. and Kalinin, V.V., Kristallografiya, 1978, vol. 23, p. 703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonova, L.S., Tkacheva, N.S. & Bukun, N.G. Effect of the Nature of a Sodium-Conducting Solid Electrolyte on the Impedance of Its Interface with the SmCo0.8Ti0.2O3 Oxide Electrode in an Oxygen Atmosphere. Russian Journal of Electrochemistry 38, 596–601 (2002). https://doi.org/10.1023/A:1016042232219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016042232219

Keywords

Navigation