Skip to main content
Log in

Bacteriocin Production by Gram-Positive Bacteria and the Mechanisms of Transcriptional Regulation

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The mechanisms of production of bacteriocins in Gram-positive bacteria and the main distinctions of these bacteriocins from the bacteriocins of Gram-negative bacteria (colicins) are outlined. A classification of antibacterial peptides is presented, and most of known class I and II peptides are pointed out. In Gram-positive bacteria, the cases of bacteriocin-associated quorum sensing are examined. For these cases, the structure of loci containing the genes of regulatory systems, transport, immunity, processing, and posttranslational modification of antibacterial peptides are described. All known regulatory sites for class II bacteriocins are presented. A description of the putative regulatory sites found by us and their classification are provided. The evolutionary tree of transcriptional response regulators is shown to correspond to the tree of their recognition sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jack, R.W., Tagg, J.R., and Ray, B., Bacteriocins of Gram-Positive Bacteria, Microbiol. Rev., 1995, vol. 59, no. 2, pp. 171-200.

    Google Scholar 

  2. Guder, A., Wiedemann, I., and Sahl, H.-G., Posttranslationally Modified Bacteriocins: The Lantibiotics, Biopolymers (Peptide Sci.), 2000, vol. 55, pp. 62-73.

    Google Scholar 

  3. Nes, I.F. and Holo, H., Class II Antimicrobial Peptides from Lactic Acid Bacteria, Biopolymers (Peptide Sci.), 2000, vol. 55, pp. 50-61.

    Google Scholar 

  4. Kleerebezem, M., Quadri, L.E.N., Kuipers, O.P., and Vos, W.M., Quorum Sensing by Peptide Pheromones and Two-Component Signal-Transduction Systems in Gram-Positive Bacteria, Mol. Microbiol., 1997, vol. 24, no. 5, pp. 895-904.

    Google Scholar 

  5. Stroud, R.M., Reiling, K., Wiener, M., and Freymann, D., Ion-Channel-Forming Colicins, Curr. Opin. Struct. Biol., 1998, no. 8, pp. 525-533.

  6. Bassler, B.L., How Bacteria Talk to Each Other: Regulation of Gene Expression by Quorum Sensing, Curr. Opin. Microbiol., 1999, no. 2, pp. 582-587.

  7. Miller, M.B. and Bassler, B.L., Quorum Sensing in Bacteria, Annu. Rev. Microbiol., 2001, vol. 55, pp. 165-199.

    Google Scholar 

  8. Zavigel'skii, G.B. and Manukhov, I.V., "Quorum Sensing," or How Bacteria Talk to Each Other, Mol. Biol. (Moscow), 2001, vol. 35, no. 2, pp. 268-277.

    Google Scholar 

  9. Klaenhammer, T.R., Genetics of Bacteriocins Produced by Lactic Acid Bacteria, FEMS Microbiol. Rev., 1993, no. 12, pp. 39-86.

  10. Kuipers, O.P., Beerthuyzen, M.M., de Ruyter, P.G.G.A., et al., Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction, J. Biol. Chem., 1995, vol. 270, pp. 27-299-27-304.

    Google Scholar 

  11. Siezen, R.J., Kuipers, O.P., and de Vos, W.M., Comparison of Lantibiotic Gene Clusters and Encoded Proteins, Antonie Van Leeuwenhoek, 1996, vol. 69, pp. 171-184.

    Google Scholar 

  12. De Ruyter, P.G.G.A., Kuipers, O.P., and de Vos, W.M., Controlled Gene Expression Systems for Lactococcus lactis with the Food-Grade Inducer Nisin, Appl. Environ. Microbiol., 1996, vol. 62, pp. 3662-3667.

    Google Scholar 

  13. Saucier, L., Poon, A., and Stiles, M.E., Induction of Bacteriocin in Carnobacterium piscicola LV17, J. Appl. Bacteriol., 1995, vol. 78, pp.684-690.

    Google Scholar 

  14. Quadri, L.E.N., Sailer, M., Roy, K.L., et al., Chemical and Genetic Characterization of Bacteriocins Produced by Carnobacterium piscicola LV17B, J. Biol. Chem., 1994, vol. 269, pp. 12 204-12 211.

    Google Scholar 

  15. O'Keeffe, T., Hill, C., and Ross, R.P., Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146, Appl. Environ. Microbiol., 1999, vol. 65, no. 4, pp. 1506-1515.

    Google Scholar 

  16. Peschel, A., Augustin, J.F., Kupke, T., et al., Regulation of Epidermin Biosynthetic Genes by EpiQ, Mol. Microbiol., 1993, no. 9, pp. 31-39.

  17. Altena, K., Guder, A., Cramer, C., and Bierbaum, G., Biosynthesis of the Lantibiotic Mersacicin: Organization of a Type B Lantibiotic Gene Cluster, Appl. Environ. Microbiol., 2000, vol. 66, no. 6, pp. 2565-2571.

    Google Scholar 

  18. Ross, K.F., Ronson, C.W., and Tagg, J.R., Isolation and Characterization of the Lantibiotic Salivaricin A and Its Structural Gene salA from Streptococcus salivarius 20P3, Appl. Environ. Microbiol., 1993, vol. 59, no. 7, pp. 2014-2021.

    Google Scholar 

  19. Eijsink, V.G.H., Brurberg, M.B., Middelhoven, P.H., and Nes, I.F., Induction of Bacteriocin Production in Lactobacillus sake by Secreted Peptide, J. Bacteriol., 1996, vol. 178, no. 8, pp. 2232-2237.

    Google Scholar 

  20. Brurberg, M.B., Nes, I.F., and Eijsink, V.G., Pheromone-Induced Production of Antimicrobial Peptides in Lactobacillus, Mol. Microbiol., 1997, vol. 26, no. 2, pp. 347-360.

    Google Scholar 

  21. Diep, D.B., Havarstein, L.S., and Nes, I.F., Characterization of the Locus Responsible for Bacteriocin Production in Lactobacillus plantarum C11, J. Bacteriol., 1996, vol. 178, pp. 4472-4483.

    Google Scholar 

  22. Quadri, L.E.N., Kleerebezem, M., Kuipers, O.P., et al., Characterization of a Locus from Carnobacterium piscicola LV17B Involved in Bacteriocin Production and Immunity: Evidence for Global Inducer-Mediated Transcriptional Regulation, J. Bacteriol., 1997, vol. 179, no. 19, pp. 6163-6171.

    Google Scholar 

  23. Mironov, A.A., Vinokurova, N.P., and Gelfand, M.M., Software for the Bacterial Genome Analysis, Mol. Biol. (Moscow), 2000, vol. 34, no. 2, pp. 253-262.

    Google Scholar 

  24. Gelfand, M.S., Recognition of Regulatory Sites by Genomic Comparison, Res. Microbiol., 1999, vol. 150, pp. 755-771.

    Google Scholar 

  25. Gelfand, M.S., Koonin, E.V., and Mironov, A.A., Prediction of Transcription Regulatory Sites in Archaea by a Comparative Genomic Approach, Nucleic Acids Res., 2000, vol. 28, pp. 695-705.

    Google Scholar 

  26. Overbeek, R., Fonstein, M., D'Souza, M., et al., The Use of Gene Clusters to Infer Functional Coupling, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 2896-2901.

    Google Scholar 

  27. Kotelnikova, E.A. and Gelfand, M.S., Transcription Regulation in a Streptococcus equi System of Genes for Bacteriocin Production, Genetika (Moscow) (in press).

  28. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673-4680.

    Google Scholar 

  29. Mulders, J.W., Boerrigter, I.J., Rollema, H.S., et al., Identification and Characterization of the Lantibiotic Nisin Z, a Natural Nisin Variant, Eur. J. Biochem., 1991, vol. 201, no. 3, pp. 581-584.

    Google Scholar 

  30. Gutowski-Eckel, Z., Klein, C., Siegers, K., et al., Growth Phase-Dependent Regulation and Membrane Localization of SpaB, a Protein Involved in Biosynthesis of the Lantibiotic Subtilin, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1-11.

    Google Scholar 

  31. Peschel, A., Schnell, N., Hille, M., et al., Secretion of the Lantibiotics Epidermin and Gallidermin: Sequence Analysis of the Genes gdmT and gdmH, Their Influence on Epidermin Production and Their Regulation by EpiQ, Mol. Gen. Genet., 1997, vol. 254, no. 3, pp. 312-318.

    Google Scholar 

  32. Qi, F., Chen, P., and Caufield, P.W., The Group I Strain of Streptococcus mutans, UA 140, Produces Both the Lantibiotic Mutacin I and a Nonlantibiotic Bacteriocin, Mutacin IV, Appl. Environ. Microbiol., 2001, vol. 67, no. 1, pp. 15-21.

    Google Scholar 

  33. Meyer, C., Bierbaum, G., Heidrich, C., et al., Nucleotide Sequence of the Lantibiotic Pep5 Biosynthetic Gene Cluster and Functional Analysis of PepP and PepC: Evidence for a Role of PepC in Thioether Formation, Eur. J. Biochem., 1995, vol. 232, no. 2, pp. 478-489.

    Google Scholar 

  34. van de Kamp, M., van den Hooven, H.W., Konings, R.N., et al., Elucidation of the Primary Structure of the Lantibiotic Epilancin K7 from Staphylococcus epidermidis K7: Cloning and Characterization of the Epilancin-K7-Encoding Gene and NMR Analysis of Mature Epilancin K7, Eur. J. Biochem., 1995, vol. 230, no. 2, pp. 587-600.

    Google Scholar 

  35. Heidrich, C., Pag, U., Josten, M., et al., Isolation, Characterization, and Heterologous Expression of the Novel Lantibiotic Epicidin 280 and Analysis of Its Biosynthetic Gene Cluster, Appl. Environ. Microbiol., 1998, vol. 64, no. 9, pp. 3140-3146.

    Google Scholar 

  36. Rince, A., Dufour, A., Le Pogam, S., et al., Cloning, Expression, and Nucleotide Sequence of Genes Involved in Production of Lactococcin DR, a Bacteriocin from Lactococcus lactis subsp. lactis, Appl. Environ. Microbiol., 1994, vol. 60, no. 5, pp. 1652-1657.

    Google Scholar 

  37. Dufour, A., Rince, A., Uguen, P., and Le Pennec, J.P., IS1675, a Novel Lactococcal Insertion Element, Forms a Transposon-like Structure Including the Lacticin 481 Lantibiotic Operon, J. Bacteriol., 2000, vol. 182, no. 19, pp. 5600-5605.

    Google Scholar 

  38. Hynes, W.L., Ferretti, J.J., and Tagg, J.R., Cloning of the Gene Encoding Streptococcin A-FF22, a Novel Lantibiotic Produced by Streptococcus pyogenes, and Determination of Its Nucleotide Sequence, Appl. Environ. Microbiol., 1993, vol. 59, no. 6, pp. 1969-1971.

    Google Scholar 

  39. Kalmokoff, M.L., Lu, D., Whitford, M.F., and Teather, R.M., Evidence for Production of a New Lantibiotic (Butyrivibriocin OR79A) by the Ruminal Anaerobe Butyrivibrio fibrisolvens OR79: Characterization of the Structural Gene Encoding Butyrivibriocin OR79A, Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 2128-2135.

    Google Scholar 

  40. Pridmore, D., Rekhif, N., Pittet, A.C., et al., Variacin, a New Lanthionine-Containing Bacteriocin Produced by Micrococcus varians: Comparison to Lacticin 481 of Lactococcus lactis, Appl. Environ. Microbiol., 1996, vol. 62, no. 5, pp. 1799-1802.

    Google Scholar 

  41. Skaugen, M., Abildgaard., C.I., and Nes, I.F., Organization and Expression of a Gene Cluster Involved in the Biosynthesis of the Lantibiotic Lactocin S, Mol. Gen. Genet., 1997, vol. 253, no. 6, pp. 674-686.

    Google Scholar 

  42. Bierbaum, G., Brotz, H., Koller, K.P., and Sahl, H.G., Cloning, Sequencing and Production of the Lantibiotic Mersacidin, FEMS Microbiol. Lett., 1995, vol. 127, pp. 121-126.

    Google Scholar 

  43. Kaletta, C., Entian, K.D., and Jung, G., Prepeptide Sequence of Cinnamycin (Ro 09-0198): The First Structural Gene of a Duramycin-Type Lantibiotic, Eur. J. Biochem., 1991, vol. 199, no. 2, pp. 411-415.

    Google Scholar 

  44. Paik, S.H., Chakicherla, A., and Hansen, J.N., Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168, J. Biol. Chem., 1998, vol. 273, no. 36, pp. 23 134-23 142.

    Google Scholar 

  45. Novak, J., Caufield, P.W., and Miller, E.J., Isolation and Biochemical Characterization of a Novel Lantibiotic Mutacin from Streptococcus mutans, J. Bacteriol., 1994, vol. 176, no. 14, pp. 4316-4320.

    Google Scholar 

  46. Woodruff, W.A., Novak, J., and Caufield, P.W., Sequence Analysis of mutA and mutM Genes Involved in the Biosynthesis of the Lantibiotic Mutacin II in Streptococcus mutans, Gene, 1998, vol. 206, no. 1, pp. 37-43.

    Google Scholar 

  47. Kimura, H., Matsusaki, H., Sashihara, T., et al., Purification and Partial Identification of Bacteriocin ISK-1, a New Lantibiotic Produced by Pediococcus sp. ISK-1, Biosci. Biotechnol. Biochem., 1998, vol. 62, pp. 2341-2345.

    Google Scholar 

  48. Gilmore, M.S., Segarra, R.A., Booth, M.C., et al., Genetic Structure of the Enterococcus faecalis Plasmid pAD1-Encoded Cytolytic Toxin System and Its Relationship to Lantibiotic Determinants, J. Bacteriol., 1994, vol. 176, no. 23, pp. 7335-7344.

    Google Scholar 

  49. Navaratna, M.A., Sahl, H.G., and Tagg, J.R., Identification of Genes Encoding Two-Component Lantibiotic Production in Staphylococcus aureus C55 and Other Phage Group II S. aureus Strains and Demonstration of an Association with the Exfoliative Toxin B Gene, Infect. Immunol., 1999, vol. 67, no. 8, pp. 4268-4271.

    Google Scholar 

  50. Martinez-Cuesta, M.C., Buist, G., Kok, J., et al., Biological and Molecular Characterization of a Two-Peptide Lantibiotic Produced by Lactococcus lactis IFPL105, J. Appl. Microbiol., 2000, vol. 89, no. 2, pp. 249-260.

    Google Scholar 

  51. Holo, H., Jeknic, Z., Daeschel, M., et al., Plantaricin W from Lactobacillus plantarum Belongs to a New Family of Two-Peptide Lantibiotics, Microbiology, 2001, vol. 147, no. 3, pp. 643-651.

    Google Scholar 

  52. Dabard, J., Bridonneau, C., Phillipe, C., et al., Ruminococcin A, a New Lantibiotic Produced by a Ruminococcus gnavus Strain Isolated from Human Feces, Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4111-4118.

    Google Scholar 

  53. Karaya, K., Shimizu, T., and Taketo, A., New Gene Cluster for Lantibiotic Streptin Possibly Involved in Streptolysin S Formation, J. Biochem. (Tokyo), 2001, vol. 129, no. 5, pp. 769-775.

    Google Scholar 

  54. Kanatani, K., Oshimura, M., and Sano, K., Isolation and Characterization of Acidocin A and Cloning of the Bacteriocin Gene from Lactobacillus acidophilus, Appl. Environ. Microbiol., 1995, vol. 61, no. 3, pp. 1061-1067.

    Google Scholar 

  55. Kanatani, K., Tahara, T., Oshimura, M., et al., Cloning and Nucleotide Sequence of the Gene for Acidocin 8912, a Bacteriocin from Lactobacillus acidophilus TK8912, Lett. Appl. Microbiol., 1995, vol. 21, no. 6, pp. 384-386.

    Google Scholar 

  56. Larsen, A.G., Vogensen, F.K., and Josephsen, J., Antimicrobial Activity of Lactic Acid Bacteria Isolated from Sour Doughs: Purification and Characterization of Bavaricin A, a Bacteriocin Produced by Lactobacillus bavaricus MI401, J. Appl. Bacteriol., 1993, vol. 75, no. 2, pp. 113-122.

    Google Scholar 

  57. Kaiser, A.L. and Montville, T.J., Purification of the Bacteriocin Bavaricin MN and Characterization of Its Mode of Action against Listeria monocytogenes Scott A Cells and Lipid Vesicles, Appl. Environ. Micribiol., 1996, vol. 62, no. 12, pp. 4529-4535.

    Google Scholar 

  58. Worobo, R.W., van Belkum, M.J., Sailer, M., et al., A Signal Peptide Secretion-Dependent Bacteriocin from Carnobacterium divergens, J. Bacteriol., 1995, vol. 177, no. 11, pp. 3143-3149.

    Google Scholar 

  59. Metivier, A., Pilet, M., Dousset, X., et al., Divercin V41, a New Bacteriocin with Two Disulfide Bonds Produced by Carnobacterium divergens V41: Primary Structure and Genomic Organization, Microbiology, 1998, vol. 144, pp. 2837-2844.

    Google Scholar 

  60. Le Marrec, C., Hyronimus, B., Bressollier, P., et al., Biochemical and Genetic Characterization of Coagulin, a New Antilisterial Bacteriocin in the Pediocin Family of Bacteriocins, Produced by Bacillus coagulans I(4), Appl. Environ. Microbiol., 2000, vol. 66, no. 12, pp. 5213-5220.

    Google Scholar 

  61. Ticnaczek, P.S., Vogel, R.F., and Hammes, W.P., Cloning and Sequencing of curA Encoding Curvacin A, the Bacteriocin Produced by Lactobacillus curvatus LTH1174, Arch. Microbiol., 1993, vol. 160, no. 4, pp. 279-283.

    Google Scholar 

  62. Hastings, J.W., Sailer, M., Johnson, K., et al., Characterization of Leucocin A-UAL 187 and Cloning of the Bacteriocin Gene from Leuconostoc gelidum, J. Bacteriol., 1991, vol. 173, no. 23, pp. 7491-7500.

    Google Scholar 

  63. Felix, J.V., Papathanasopoulos, M.A., Smith, A.A., et al., Characterization of Leucocin B-Ta11a: A Bacteriocin from Leuconostoc carnosum Ta11a Isolated from Meat, Curr. Microbiol., 1994, vol. 29, no. 4, pp. 207-212.

    Google Scholar 

  64. Papathanasopoulos, M.A., Dykes, G.A., Revol-Junelles, A.M., et al., Sequence and Structural Relationships of Leucocins A-, B-and C-TA33a from Leuconostoc mesenteroides TA33a, Microbiology, 1998, vol. 144, no. 5, pp. 1343-1348.

    Google Scholar 

  65. Kalmokoff, M.L., Banerjee, S.K., Cyr, T., et al., Identification of a New Plasmid-Encoded Sec-Dependent Bacteriocin Produced by Listeria innocua 743, Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4041-4047.

    Google Scholar 

  66. Hechard, Y., Berjeaud, J.M., and Cenatiempo, Y., Characterization of the mesB Gene and Expression of Bacteriocins by Leuconostoc mesenteroides Y105, Curr. Microbiol., 1999, vol. 39, no. 5, pp. 265-269.

    Google Scholar 

  67. Fremaux, C., Hechard, Y., and Cenatiempo, Y., Mesentericin Y105 Gene Clusters in Leuconostoc mesenteroides Y105, Microbiology, 1995, vol. 141, no. 7, pp. 1637-1645.

    Google Scholar 

  68. Bennik, M.H., Vanloo, B., Brasseur, R., et al., A Novel Bacteriocin with a YGNGV Motif from Vegetable-Associated Enterococcus mundtii: Full Characterization and Interaction with Target Organisms, Biochim. Biophys. Acta, 1993, vol. 1373, no. 1, pp. 47-58.

    Google Scholar 

  69. Motlagh, A., Bukhtiyarova, M., and Ray, B., Complete Nucleotide Sequence of PSMB74, a Plasmid Encoding the Production of Pediocin AcH in Pediococcus acidilactici, Lett. Appl. Microbiol., 1994, vol. 18, no. 6, pp. 305-312.

    Google Scholar 

  70. Kantor, A., Montville, T.J., Mett, A., and Shapira, R., Molecular Characterization of the Replicon of the Pentosaceus 43200 Pediocin A Plasmid pMD136, FEMS Microbiol. Lett., 1997, vol. 151, no. 2, pp. 237-244.

    Google Scholar 

  71. Giacomini, A., Squartini, A., and Nuti, M.P., Nucleotide Sequence and Analysis of Plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) Involved in Pediocin A Production, Plasmid, 2000, vol. 43, no. 2, pp. 111-122.

    Google Scholar 

  72. deSaizieu, A., Gardes, C., Flint, N., et al., Microarray-Based Identification of a Novel Streptococcus pneumoniae Regulon Controlled by an Autoinduced Peptide, J. Bacteriol., 2000, vol. 182, no. 17, pp. 4696-4703.

    Google Scholar 

  73. Axelsson, L. and Holck, A., The Genes Involved in Production of and Immunity to Sakacin A, a Bacteriocin from Lactobacillus sake Lb706, J. Bacteriol., 1995, vol. 177, no. 8, pp. 2125-2137.

    Google Scholar 

  74. Cintas, L.M., Casaus, P., Havarstein, L.S., et al., Biochemical and Genetic Characterization of Enterocin P, a Novel Sec-Dependent Bacteriocin from Enterococcus faecium P13 with a Broad Antimicrobial Spectrum, Appl. Environ. Microbiol., 1997, vol. 63, no. 11, pp. 4321-4330.

    Google Scholar 

  75. Tahara, T., Oshimura, M., Umezawa, C., and Kanatani, K., Isolation, Partial Characterization, and Mode of Action of Acidocin J1132, a Two-Component Bacteriocin Produced by Lactobacillus acidophilus JCM1132, Appl. Environ. Microbiol., 1996, vol. 62, no. 3, pp. 892-897.

    Google Scholar 

  76. Kawai, Y., Saitoh, B., Takahashi, O., et al., Primary Amino Acid and DNA Sequences of Gassericin T, a Lactacin F-family Bacteriocin Produced by Lactobacillus gasseri SBT2055, Biosci. Biotechnol. Biochem., 2000, vol. 64, no. 10, pp. 2201-2208.

    Google Scholar 

  77. Allison, G.E., Worobo, R.W., Stiles, M.E., and Klaenhammer, T.R., Heterologous Expression of the Lactacin F Peptides by Carnobacterium pisciloca LV17, Appl. Environ. Microbiol., 1995, vol. 61, no. 4, pp. 1371-1377.

    Google Scholar 

  78. Contreras, B.G., De Vuyst, L., Devreese, B., et al., Isolation, Purification, and Amino Acid Sequence of Lactobin A, One of the Two Bacteriocins Produced by Lactobacillus amylovorus LMG P-13139, Appl. Environ. Microbiol., 1997, vol. 63, no. 1, pp. 13-20.

    Google Scholar 

  79. Nissen-Meyer, J., Holo, H., Havarstein, L.S., et al., A Novel Lactococcal Bacteriocin Whose Activity Depends on the Complementary Action of Two Peptides, J. Bacteriol., 1992, vol. 174, no. 17, pp. 5686-5692.

    Google Scholar 

  80. Moll, G., Hildeng-Hauge, H., Nissen-Meyer, J., et al., Mechanistic Properties of the Two-Component Bacteriocin Lactococcin G, J. Bacteriol., 1998, vol. 180, no. 1, pp. 96-99.

    Google Scholar 

  81. Morgan, S., Ross, R.P., and Hill, C., Bacteriolytic Activity Caused by the Presence of a Novel Lactococcal Plasmid Encoding Lactococcins A, B, and M, Appl. Environ. Microbiol., 1995, vol. 61, no. 8, pp. 2995-3001.

    Google Scholar 

  82. Stephens, S.K., Floriano, B., C athcart, D.P., et al., Molecular Analysis of the Locus Responsible for Production of Plantaricin S, a Two-Peptide Bacteriocin Produced by Lactobacillus plantarum LPCO10, Appl. Environ. Microbiol., 1998, vol. 64, no. 5, pp. 1871-1877.

    Google Scholar 

  83. Marciset, O., Jeronimus-Stratingh, M.C., Mollet, B., and Poolman, B., Thermophilin 13, a Nontypical Antilisterial Poration Complex Bacteriocin, That Functions without a Receptor, J. Biol. Chem., 1997, vol. 272, no. 22, pp. 14 277-14 284.

    Google Scholar 

  84. Balla, E., Dicks, L.M.T., Du Toit, M., et al., Characterization and Cloning of the Genes Encoding Enterocin 1071A and Enterocin 10071B, Two Antimicrobial Peptides Produced by Enterococcus faecalis BFE 1071, Appl. Environ. Microbiol., 2000, vol. 66, no. 4, pp. 1298-1304.

    Google Scholar 

  85. Casaus, P., Nilsen, T., Cintas, L.M., et al., Enterocin B, a New Bacteriocin from Enterococcus faecium T136 Which Can Act Synergistically with Enterocin A, Microbiology, 1997, vol. 143, no. 7, pp. 2287-2294.

    Google Scholar 

  86. Franz, C.M., Worobo, R.W., Quadri, L.E., et al., Atypical Genetic Locus Associated with Constitutive Production of Enterocin B by Enterococcus faecium BFE 900, Appl. Environ. Microbiol., 1999, vol. 65, no. 5, pp. 2170-2178.

    Google Scholar 

  87. Cintas, L.M., Casaus, P., Holo, H., et al., Enterocins L50A and L50B, Two Novel Bacteriocins from Enterococcus faecium L50, Are Related to Staphylococcal Hemolysins, J. Bacteriol., 1998, vol. 180, no. 8, pp. 1988-1994.

    Google Scholar 

  88. Donvito, B., Etienne, J., Denoroy, L., et al., Synergistic Hemolytic Activity of Staphylococcus lugdunensis Is Mediated by Three Peptides Encoded by a Non-Agr Genetic Locus, Infect. Immunol., 1997, vol. 65, no. 1, pp. 95-100.

    Google Scholar 

  89. Whitford, M.F., McPherson, M.A., Forster, R.J., and Teather, R.M., Identification of Bacteriocin-like Inhibitors from Rumen Streptococcus spp. and Isolation and Characterization of Bovicin 255, Appl. Environ. Microbiol., 2001, vol. 67, no. 2, pp. 569-574.

    Google Scholar 

  90. Holo, H., Nilssen, O., and Nes, I.F., Lactococcin A, a New Bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and Characterization of the Protein and Its Gene, J. Bacteriol., 1991, vol. 173, pp. 3879-3887.

    Google Scholar 

  91. Stoddard, G.W., Petzel, J.P., van Belkum, M.J., et al., Molecular Analyses of the Lactococcin A Gene Cluster from Lactococcus lactis subsp. lactis Biovar diacetylactis WM4, Appl. Environ. Microbiol., 1992, vol. 58, no. 6, pp. 1952-1961.

    Google Scholar 

  92. Leer, R.J., van der Vossen, J.M., van Giezen, M., et al., Genetic Analysis of Acidocin B, a Novel Bacteriocin Produced by Lactobacillus acidophilus, Microbiology, 1995, vol. 141, no. 7, pp. 1629-1635.

    Google Scholar 

  93. Kawai, Y., Saito, T., Suzuki, M., and Itoh, T., Sequence Analysis by Cloning of the Structural Gene of Gassericin A, a Hydrophobic Bacteriocin Produced by Lactobacillus gasseri LA39, Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 5, pp. 887-892.

    Google Scholar 

  94. Martinez, B., Fernandez, M., Suarez, J.E., and Rodriguez, A., Synthesis of Lactococcin 972, a Bacteriocin Produced by Lactococcus lactis IPLA 972, Depends on the Expression of a Plasmid-Encoded Bicistronic Operon, Microbiology, 1999, vol. 145, no. 11, pp. 3155-3161.

    Google Scholar 

  95. Garver, K.I. and Muriana, P.M., Purification and Partial Amino Acid Sequence of Curvaticin FS47, a Heat-Stable Bacteriocin Produced by Lactobacillus curvatus FS47, Appl. Environ. Microbiol., 1994, vol. 60, no. 6, pp. 2191-2195.

    Google Scholar 

  96. Ehrmann, M.A., Remiger, A., Eijsink, V.G., and Vogel, R.F., A Gene Cluster Encoding Plantaricin 1.25β and Other Bacteriocin-like Peptides in Lactobacillus plantarum TMW1.25, Biochim. Biophys. Acta, 2000, vol. 1490, no. 3, pp. 355-361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotelnikova, E.A., Gelfand, M.S. Bacteriocin Production by Gram-Positive Bacteria and the Mechanisms of Transcriptional Regulation. Russian Journal of Genetics 38, 628–641 (2002). https://doi.org/10.1023/A:1016035700012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016035700012

Keywords

Navigation