Skip to main content
Log in

Development of a Polymeric Surgical Paste Formulation for Taxol

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop and characterize a biodegradable polymeric sustained release surgical paste formulation for taxol.

Methods. Taxol was incorporated into poly(ε-caprolactone) (PCL) or blends of PCL with methoxypolyethylene glycol, MW 350 (MePEG). The surgical pastes were characterized using gel permeation chromatography, thermal analysis, scanning electron microscopy, and a tensile strength tester. In vitro release data for taxol from the surgical paste formulations was carried out at 37°C in phosphate buffered saline, pH 7.4, using an HPLC assay for taxol. Antiangiogenic activity of the formulations were assessed using a chick chorioallantoic membrane assay (CAM).

Results. The addition of up to 30% MePEG in PCL decreased the melting point of PCL by 5°C and the tensile strength by 152.7 N/cm2 to 26.7 N/cm2 but increased the degree of PCL crystallinity from 42% to 51%. Taxol showed a biphasic in vitro release profile composed of a burst phase lasting 1 or 2 days followed by a period of slow sustained drug release. There was no significant difference in the release profiles of taxol from two different sources of PCL. The addition of MePEG increased the amount of water taken up by the polymer blends but decreased the rate of taxol release. The formulations were shown to have antiangiogenic activity by the CAM assay at levels as low as 0.1% taxol using 3 mg surgical paste pellets.

Conclusions. Our surgical paste formulations for taxol give sustained release while having physical properties which can be adjusted using additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. M. Spencer and D. Faulds. Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs. 48:794–847 (1994).

    Google Scholar 

  2. N. Onetto, R. Canetta, B. Winograd, R. Catane, M. Dougan, J. Grechko, J. Burroughs and M. Rozencweig. Overview of taxol safety. Journal of the National Cancer Institute Monographs. 15:131–139 (1993).

    Google Scholar 

  3. A. M. C. Oktaba, W. L. Hunter and A. L. Arsenault. Taxol: a potent inhibitor of angiogenesis and tumor angiogenesis. Submitted to International Journal of Cancer. (1995).

  4. J. Folkman and M. Klagsburg. Angiogenic factors. Science. 235:442–447 (1987).

    Google Scholar 

  5. M. E. Stearns and M. Wang. Taxol blocks processes essential for prostate tumour cell (PC-3 ML) invasion and metastases. Cancer Research. 52:3776–3781 (1992).

    Google Scholar 

  6. V. T. Devita, Jr., S. Hellman and S. A. Rosenberg, (eds.) Cancer: Principles and Practice of Oncology. 3rd ed. Philadelphia: J. B. Lippincott Co., 1989.

    Google Scholar 

  7. F. H. Hochberg and A. Pruitt. Assumptions in the radiotherapy of glioblastoma. Neurology. 30:907–911 (1980).

    Google Scholar 

  8. K. E. Wallner, J. H. Galicich, G. Krol, E. Arbit and M. G. Malkin. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. International Journal of Radiation Oncology Biology and Physics. 16:1405–1409 (1988).

    Google Scholar 

  9. C. G. Pitt. Poly-ε-caprolactone and its copolymers. In M. Chasinand R. Langer eds. Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker: New York, 1990, pp. 71–120.

    Google Scholar 

  10. C. G. Pitt, M. M. Gratzl, A. R. Jeffcoat, R. Zweidinger and A. Schindler. Sustained drug delivery ststems II: factors affecting release rates from poly(ε-caprolactone) and related biodegradable polyesters. Journal of Pharmaceutical Sciences. 68:1534–1538 (1979).

    Google Scholar 

  11. G. Perego, G. D. Cella, N. N. Aldini, M. Fini and R. Giardino. Preparation of a new nerve guide from a poly(L-lactide-co-6-caprolactone). Biomaterials. 15:189–193 (1994).

    Google Scholar 

  12. P. Bruin, J. Smedinga, A. J. Pennings and M. F. Jonkman. Biodegradable lysine diisocyanate-based poly(glycolide-co-ε-caprolactone)-urethane network in artificial skin. Biomaterials. 11:291–295 (1990).

    Google Scholar 

  13. C. G. Pitt, M. M. Gratzl, G. L. Kimmel, J. Surles and A. Schindler. Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(ε-caprolactone), and their copolymers in vivo. Biomaterials. 2:215–220 (1981).

    Google Scholar 

  14. S. C. Woodward, P. S. Brewer, F. Moatamed, A. Schindler and C. G. Pitt. The intracellular degradation of poly(ε-caprolactone). Journal of Biomedical Materials Research. 19:437–444 (1985).

    Google Scholar 

  15. O. F. Solomon and I. Z. Ciuta. Détermination di la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. Journal of Applied Polymer Science. 6:683–686 (1962).

    Google Scholar 

  16. J. D. Dugan, Jr., M. T. Lawton, B. Glaser and H. Brem. A new technique for explantation and in vitro cultivation of chicken embryos. The Anatomical Record. 229:125–128 (1991).

    Google Scholar 

  17. S. L. Rosen. Fundamental Principles of Polymeric Materials. (Second Edition) John Wiley & Sons, Inc., New York, 1993.

    Google Scholar 

  18. J. M. G. Cowie. Polymers: Chemistry & Physics of Modern Materials. International Textbook Company Limited, Aylesbury, 1973.

    Google Scholar 

  19. J. D. Adams, K. P. Flora, B. R. Goldspiel, J. W. Wilson, S. G. Arbuck and R. Finley. Taxol: a history of pharmaceutical development and current pharmaceutical concerns. Journal of the National Cancer Institute Monographs. 15:141–147 (1993).

    Google Scholar 

  20. R. Bawa, R. A. Siegel, B. Marasca, M. Karel and R. Langer. An explanation for the controlled release of macromolecules from polymers. Journal of Controlled Release. 1:259–267 (1985).

    Google Scholar 

  21. R. A. Siegel and R. Langer. Mechanistic studies of macromolecular drug release from macroporous polymers. II. Models for the slow kinetics of drug release. Journal of Controlled Release. 14:153–167 (1990).

    Google Scholar 

  22. C. Sturesson, J. Carlfors, K. Edsman and M. Andersson. Preparation of biodegradable poly(lactic-co-glycolic) acid microspheres and their in vitro release of timolol maleate. International Journal of Pharmaceutics. 89:235–244 (1993).

    Google Scholar 

  23. J. Folkman. Toward an understanding of angiogenesis: search and discovery. Perspectives in Biology and Medicine. 29:10–36 (1985).

    Google Scholar 

  24. R. Steiner. Angiostatic activity of anticancer agents in the chick embryo chorioallantoic membrane (CHE-CAM) assay. In R. Steiner, P. B. Weiszand R. Langer eds. Angiogenesis, Birkhauser Verlag: Berlin, 1992, pp. 449–454.

    Google Scholar 

  25. O. Kubo, Y. Tajika, Y. Muragaki, H. Hiyama, K. Takakura, M. Yoshida and M. Kumakura. Local chemotherapy with slowly-releasing anticancer drug-polymers for malignant brain tumors. Journal of Controlled Release. 32:1–8 (1994).

    Google Scholar 

  26. K. A. Walter, M. A. Cahan, A. Gur, B. Tyler, J. Hilton, O. M. Colvin, P. C. Burger, A. Domb and H. Brem. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Research. 54:2207–2212 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winternitz, C.I., Jackson, J.K., Oktaba, A.M. et al. Development of a Polymeric Surgical Paste Formulation for Taxol. Pharm Res 13, 368–375 (1996). https://doi.org/10.1023/A:1016032207246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016032207246

Navigation