Skip to main content
Log in

Lipophilicity in Molecular Modeling

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The molecular lipophilicity potential (MLP) offers a three-dimensional representation of lipophilicity, a molecular property encoding intermolecular recognition forces and intramolecular interactions.

Methods. The interest and applications of the MLP in molecular modeling are varied, as ilustrated here.

Results. The MLP is a major tool to assess the dependence of lipophilicity on conformation. As a matter of fact, the MLP combined with an exploration of the conformational space of a solute reveals its "chameleonic” behavior, i.e. its capacity to adapt to its molecular environment by hydrophobic collapse or hydrophilic folding. Another successful application of the MLP is its concatenation into 3D-QSAR (Comparative Molecular Field Analysis, CoMFA).

Conclusions. Work is in progress to expand the MLP into a docking tool in the modeling of ligand-receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. F. Helmer, K. Kiehs, and C. Hansch, The linear free-energy relation between partition coefficients and the binding, and conformational perturbation of macromolecules by small organic compounds. Biochem. 7:2858–2863 (1968).

    Google Scholar 

  2. C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley and Sons, New York, 1979.

    Google Scholar 

  3. R. F. Rekker. The Hydrophobic Fragmental Constant. Elsevier, Amsterdam, 1977.

    Google Scholar 

  4. H. van de Waterbeemd and B. Testa. The parametrization of lipophilicity and other structural properties in drug design. In B. Testa (ed.), Advances in Drug Research. Vol. 16, Academic Press, London, 1987, pp. 87–227.

    Google Scholar 

  5. N. El Tayar, B. Testa, and P. A. Carrupt, Polar intermolecular interactions encoded in partition coefficients: an indirect estimation of hydrogen-bond parameters of polyfunctional solutes. J. Phys. Chem. 96:1455–1459 (1992).

    Google Scholar 

  6. E. Audry, J. P. Dubost, J. C. Colleter, and P. Dallet, A new approach to structure-activity relations: the “molecular lipophilicity potential”. Eur. J. Med. Chem. 21:71–72 (1986).

    Google Scholar 

  7. J. L. Fauchère, P. Quarendon, and L. Kaetterer, Estimating and representing hydrophobicity potential. J. Mol. Graphics 6:203–206 (1988).

    Google Scholar 

  8. P. Furet, A. Sele, and N. C. Cohen, 3D molecular lipophilicity potential profiles: a new tool in molecular modeling. J. Mol. Graphics 6:182–189 (1988).

    Google Scholar 

  9. G. E. Kellogg, S. F. Semus, and D. J. Abraham, HINT: a new method of empirical hydrophobic field calculation for CoMFA. J. Comput.-Aided Mol. Des. 5:545–552 (1991).

    Google Scholar 

  10. W. Heiden, G. Moeckel, and J. Brickmann, A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J. Comput.-Aided Mol. Des. 7:503–514 (1993).

    Google Scholar 

  11. P. Gaillard, P. A. Carrupt, B. Testa, and A. Boudon, Molecular lipophilicity potential, a tool in 3D-QSAR. Method and applications. J. Comput.-Aided Mol. Des. 8:83–96 (1994).

    Google Scholar 

  12. D. J. Abraham and G. E. Kellogg. Hydrophobic fields. In H. Kubinyi (ed.), 3D QSAR in Drug Design. Theory Methods and Applications. ESCOM Science Publishers, Leiden, 1993, pp. 506–522.

    Google Scholar 

  13. R. W. Taft, J. L. M. Abboud, M. J. Kamlet, and M. H. Abraham, Linear solvation energy relations. J. Sol. Chem. 14:153–186 (1985).

    Google Scholar 

  14. N. El Tayar, R. S. Tsai, B. Testa, P. A. Carrupt, and A. Leo, Partitioning of solutes in different solvent systems: the contribution of hydrogen-bonding capacity and polarity. J. Pharm. Sci. 80:590–598 (1991).

    Google Scholar 

  15. B. Testa, P. A. Carrupt, P. Gaillard, and R. S. Tsai. Intramolecular interactions encoded in lipophilicity: their nature and significance. In V. Pliska, B. Testa, and H. van de Waterbeemd (eds.), Lipophilicity in Drug Research, VCH Publishers, Weinheim, 1996, in press.

    Google Scholar 

  16. R. F. Rekker and H. M. De Kort, The hydrophobic fragmental constant; an extension to a 1000 data point set. Eur. J. Med. Chem. 14:479–488 (1979).

    Google Scholar 

  17. L. B. Kier and B. Testa. Complexity and emergence in drug research. In B. Testa and U.A. Meyer (eds.), Advances in Drug Research. Vol. 26, Academic Press, London, 1995, pp. 1–43.

    Google Scholar 

  18. C. Hansch and S. M. Anderson, The effect of intramolecular hydrophobic bonding on partition coefficient. J. Org. Chem. 32:2583–2586 (1967).

    Google Scholar 

  19. R. A. Wiley and D. H. Rich, Peptidomimetics derived from natural products. Med. Res. Rev. 13:327–384 (1993).

    Google Scholar 

  20. D. H. Rich. Effect of hydrophobic collapse on enzyme-inhibitor interactions. Implications for the design of peptidomimetics. In B. Testa, E. Kyburz, W. Fuhrer, and R. Giger (eds.), Perspectives in Medicinal Chemistry, VCH Verlag, Weinheim, 1993, pp. 15–25.

    Google Scholar 

  21. X. K. Jiang, Hydrophobic-lipophilicity interactions. Aggregation and self-coiling of organic molecules. Acc. Chem. Res. 21:362–367 (1988).

    Google Scholar 

  22. P. A. Carrupt, B. Testa, A. Bechalany, N. El Tayar, P. Descas, and D. Perrissoud, Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J. Med. Chem. 34:1272–1275 (1991).

    Google Scholar 

  23. P. Broto, G. Moreau, and C. Vandycke, Molecular structure: perception, autocorrelation descriptor and SAR studies. Perception of molecules: topological structure and 3-dimensional structure. Eur. J. Med. Chem. 19:61–65 (1984).

    Google Scholar 

  24. A. K. Ghose and G. M. Crippen, Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. 1. Partition coefficients as a measure of hydrophobicity. J. Comput. Chem. 7:565–577 (1986).

    Google Scholar 

  25. A. Kantola, H. O. Villar, and G. H. Loew, Atom based parametrization for a conformationally dependent hydrophobic index. J. Comput. Chem. 12:681–689 (1991).

    Google Scholar 

  26. G. Klopman and S. Wang, A computer automated structure evaluation (CASE). Approach to calculation of partition coefficients. J. Comput. Chem. 12:1025–1032 (1991).

    Google Scholar 

  27. P. Camilleri, S. A. Watts, and J. A. Boraston, A surface area approach to determination of partition coefficients. J. Chem. Soc., Perkin Trans. 2 1699–1707 (1988).

    Google Scholar 

  28. S. Hirono, Q. Liu, and I. Moriguchi, High correlation between hydrophobic free energy and molecular surface area characterized by electrostatic potential. Chem. Pharm. Bull. 39:3106–3109 (1991).

    Google Scholar 

  29. A. K. Ghose and G. M. Crippen, Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J. Chem. Inf. Comput. Sci. 27:21–35 (1987).

    Google Scholar 

  30. P. Gaillard, P. A. Carrupt, and B. Testa, The conformation-dependent lipophilicity of morphine glucuronides as calculated from their molecular lipophilicity potential. Bioorg. Med. Chem. Lett. 4:737–742 (1994).

    Google Scholar 

  31. P. A. Carrupt, P. Gaillard, F. Billois, P. Weber, B. Testa, C. Meyer, and S. Pérez. The molecular lipophilicity potential (MLP) a new tool for log P calculation and in comparative molecular field analysis (CoMFA). In V. Pliska, B. Testa, and H. van de Waterbeemd (eds.), Lipophilicity in Drug Research, VCH Publishers, Weinheim, 1996, in press.

    Google Scholar 

  32. A. R. Leach. A survey of methods for searching the conformational space of small and medium-sized molecules. In K. B. Lipkowitz and D. B. Boyd (eds.), Reviews in Computational Chemistry, Vol. II, VCH, New York, 1991, pp. 1–55.

    Google Scholar 

  33. M. Brunner-Guenat, P. A. Carrupt, G. Lisa, B. Testa, S. Rose, K. Thomas, P. Jenner, and P. Ventura, Esters of L-Dopa: structure-hydrolysis relationships and ability to induce circling behaviour in an experimental model of hemiparkinsonism. J. Pharm. Pharmacol. 47:861–869 (1995).

    Google Scholar 

  34. R. D. Cramer III, D. E. Patterson, and J. D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110:5959–5967 (1988).

    Google Scholar 

  35. R. D. Cramer III, S. A. DePriest, D. E. Patterson, and P. Hecht. The developing practice of comparative molecular field analysis. In H. Kubinyi (ed.), 3D QSAR in Drug Design. Theory Methods and Applications. ESCOM Science Publishers, Leiden, 1993, pp. 443–485.

    Google Scholar 

  36. G. Klebe and U. Abraham, On the prediction of binding properties of drug molecules by comparative molecular field analysis. J. Med. Chem. 36:70–80 (1993).

    Google Scholar 

  37. P. Gaillard, P. A. Carrupt, B. Testa, and P. Schambel, Binding of arylpiperazines, (aryloxy)propanolamines and tetrahydro-pyridyl-indoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-activity relationship models. J. Med. Chem. 39:126–134 (1996).

    Google Scholar 

  38. S. Kneubühler, U. Thull, C. Altomare, V. Carta, P. Gaillard, P. A. Carrupt, A. Carotti, and B. Testa, Inhibition of monoamine oxidase-B by 5H-indeno[1,2-c]pyridazine derivatives: biological activities, quantitative structure-activity relationships (QSARs) and 3D-QSARs. J. Med. Chem. 38:3874–3883 (1995).

    Google Scholar 

  39. U. Thull, S. Kneubühler, P. Gaillard, P. A. Carrupt, B. Testa, C. Altomare, A. Carotti, P. Jenner, and K. S. P. McNaught, Inhibition of monoamine oxidase by isoquinoline derivatives: qualitative and 3D-quantitative structure-activity relationships. Biochem. Pharmacol. 50:869–877 (1995).

    Google Scholar 

  40. C. Meyer. Bases moléculaires du goût su{ie343-1}ré: flexibilité conformationnelle et relations structure-activité d'édulcorants intenses dérivés du saccharose. Université de Nantes, Nantes, 1994.

    Google Scholar 

  41. C. T. Dourish, Piribedil: behavioural neurochemical and clinical profile of a dopamine agonist. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 7:3–27 (1983).

    Google Scholar 

  42. Y. Evrard, Le piribédil, agoniste dopaminergique. Actual. Chim. Thér. N o Spécial: 16–20 (1991).

  43. C. D. Livingstone, P. G. Strange, and L. H. Naylor, Molecular modelling of D2-like dopamine receptors. Biochem. J. 287:277–282 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testa, B., Carrupt, PA., Gaillard, P. et al. Lipophilicity in Molecular Modeling. Pharm Res 13, 335–343 (1996). https://doi.org/10.1023/A:1016024005429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016024005429

Navigation