Skip to main content
Log in

Zonation of ground beetles (Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the North and the Baltic Sea and the impact of the predicted sea level increase

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

The ground beetles and spiders of two salt marshes at the German Northand Baltic Sea coast were investigated by pitfall traps in 1997 and 1998. Whilethe sites at the North Sea coast are tidal salt marshes, the salt marshes at theBaltic Sea are not influenced by tides. Pitfall traps were installed in agradient from 20 to 150 cm above MHT (mean high tide: 157cm + NN, NN: 500 cm above 0 at Amsterdam gauge) atthe North Sea coast or NN at the Baltic Sea coast at six or sevensampling elevations, each with five replicates. Conductivity, water content, organic substance,frequency or duration of floodings, sand content and pH of the soil weredetermined. The flooding regime is the major factor controlling the zonation ofinvertebrates. Two and three invertebrate assemblages at the North and BalticSea, respectively, were distinguished. These corresponded well with thevegetational zones. The border between the two zones was at 60–80cm above MHT at the North Sea. The three zones at the Baltic Seaextended between 20 and 30 cm, 40 to 80 cm and 100 to150 cm above NN. The elevation of the mean abundance of speciesabove MHT or NN was calculated. A tide simulation experiment resulted in ashifting population and in an increasing activity under a tidal regime aspredicted for the global climate change conditions in 2050. From the actualelevation of the mean abundance, the habitat size of salt marsh species wascalculated for a moderate and worse scenario of global climate change. Habitatreduction becomes highest for species of the lower salt marsh zone. Under worseconditions the gradiental length of habitat will only amount to a maximum of 20m at the slopes of the dikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andresen H., Bakker J.P., Brongers M., Heydemann B. and Irmler U. 1990. Long-term changes of salt marsh communities by cattle grazing. Vegetatio 89: 137-148.

    Google Scholar 

  • Bakker J.P. and Ruyter J.C. 1981. Effects of 5 years of grazing on a salt marsh vegetation. A study with sequential mapping. Vegetatio 44: 81-100.

    Google Scholar 

  • Beeftink W.G. 1977. The coastal salt marshes of western and northern Europe: an ecological and phytosociological approach. In: Chapman V.J. (ed.), Wet Coastal Ecosystems. Elsevier, Amsterdam, pp. 109-155.

    Google Scholar 

  • BethgeW. 1973. Ökologisch-physiologische Untersuchungen über die Bindung von Erigone longipalpis (Araneae, Micryphantidae) an das Litoral. Faunistisch-ökologische Mitteilungen 4: 223-240.

    Google Scholar 

  • Desender K. 1985.Wing polymorphism and reproductive biology in the halobiont carabid beetle Pogonus chalceus (Marsham) (Coleoptera, Carabidae). Biologisch Jaarboek Dodonaea 53: 89-100.

    Google Scholar 

  • Dijkema K.S. 1990. Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea: their vegetation and management. Biological Conservation 51: 191-209.

    Google Scholar 

  • Dijkema K.S., Bossinade J.H. and De Glopper R.J. 1990. Salt marshes in the Netherlands Wadden Sea: rising high-tide levels and accretion enhancement. In: Beukema J.J. (ed.), Expected Effects of Climatic Change on Marine Coastal Ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 173-188.

    Google Scholar 

  • FosterW.A. 1983. Activity rhythms and the tide in a salt marsh beetle Dicheirotichus gustavii. Oecologia 60: 111-113.

    Google Scholar 

  • Främbs H. 1997. Auswirkungen von Sturmfluten auf Laufkäfer (Col., Carabidae) der Nordseeküste. Arbeitsberichte Landschafstokölogie Münster 18: 47-61.

    Google Scholar 

  • Graßl H. 1993. Globaler Wandel. In: Schellnhuber H.J. and Sterr H. (eds), Klimaänderung und Küste. Einblick ins Treibhaus. Springer, Berlin, pp. 28-36.

    Google Scholar 

  • Heydemann B. 1967. Die biologische Grenze Land-Meer im Bereich der Salzwiesen. Franz Steiner, Wiesbaden.

    Google Scholar 

  • Heydemann B. 1979a. Biological consequences of diking on saltmarshes and mud and sandy flats. In: Tougaard S. and Helweg Ovesen C. (eds), Environmental Problems of the Waddensea-Region, Proceedings of the Scientific Symposium. Ribe, Denmark, pp. 31-71.

    Google Scholar 

  • Heydemann B. 1979b. Responses of animals to spatial and temporal environmental heterogeneity within salt marshes. In: Jefferies R.L. and Davy A.J. (eds), Ecological Processes in Coastal Environments. Blackwell, London, pp. 145-163.

    Google Scholar 

  • Irmler U. 1999. Environmental characteristics of ground beetle assemblages in northern German forests as basis for an expert system. Zeitschrift für Ökologie und Naturschutz 8: 227-237.

    Google Scholar 

  • Irmler U. and Heydemann B. 1985. Populationsdynamik und Produktion von Erigone longipalpis (Araneae, Micryphantidae) auf einer Salzwiese Nordwestdeutschlands. Faunistisch-ökologische Mitteilungen 5: 443-454.

    Google Scholar 

  • Irmler U. and Heydemann B. 1986. Die ökologische Problematik der Beweidung von Salzwiesen an der niedersächsischen Küste-am Beispiel der Leybucht. Naturschutz und Landschaftspflege in Niedersachsen 11: 1-115.

    Google Scholar 

  • Jeschke L. 1987. Vegetationsdynamik des Salzgrünlandes im Bereich der Ostseeküste der DDR unter dem Einfluß des Menschen. Hercynia 24: 321-328.

    Google Scholar 

  • Kiehl K. 1997.Vegetationsmuster inVorlandsalzwiesen in Abhängigkeit von Beweidung und abiotischen Standortfaktoren. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg 1-142.

  • Klieber A., Schröder U. and Irmler U. 1995. Der Einfluß der Mahd auf die Arthropoden des Feucht-grünlandes. Zeitschrift für Ökologie und Naturschutz 4: 227-237.

    Google Scholar 

  • Lindroth C. 1945. Die Fennoskandischen Carabidae, eine tiergeographische Studie. I. Spezieller Teil K.

  • Locket G.H. and Millidge A.F. 1953. British Spiders Vol. II. Ray Society, London, p. 449.

    Google Scholar 

  • Meijer J. 1980. The development of some elements of the arthropod fauna of a new polder. Oecologia 45: 220-235.

    Google Scholar 

  • Meyer H. 1984. Experimentell-ökologische-Untersuchungen an Gallmücken (Cecidomyiidae-Diptera) in Salzwiesenbereichen Nordwestdeutschlands. Faunistisch-ökologische Mitteilungen Suppl. 5. 1-124.

  • Meyer H., Fock H., Haase A., Reinke H.D. and Tulowitzki I. 1995. Structure of the invertebrate fauna in salt marshes of the Wadden Sea coast of Schleswig-Holstein influenced by sheep-grazing. Helgoländer Meeresuntersuchungen 49: 563-589.

    Google Scholar 

  • Müller-Motzfeld G. 1994. Landesfauna und globale Klima-Anderung am Beispiel der Laufkäfer (Col., Carabidae). Entomologische Nachrichten und Berichte 38: 183-188.

    Google Scholar 

  • Odum W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147-176.

    Google Scholar 

  • Onno M. 1933. Die Strandformationen an der mittleren Lübecker Bucht. Berichte der Deutschen Botanischen Gesellschaft 51: 232-267.

    Google Scholar 

  • Reinke H.D. and Irmler U. 1994. Die Spinnenfauna (Araneae) Schleswig-Holsteins am Boden und in der bodennahen Vegetation. Faunistisch-ökologische Mitteilungen Suppl. 17. 1-147.

  • Reinke H.D., Heller K. and Irmler U. 2000. Zonierung der Spinnen und Laufkäfer (Araneida, Coleoptera: Carabidae) im Uberflutungsgradienten der Salzwiesen an der Nord-und Ostsee. Entomologica Basiliensia 22: 115-120.

    Google Scholar 

  • Schaefer M. 1970. Einfluß der Raumstruktur in Landschaften der Meeresküste auf das Verteilungsmus-ter der Tierwelt. Zoologische Jahrbücher Systematik 97: 55-124.

    Google Scholar 

  • Scheffer F. 1992. Lehrbuch der Bodenkunde. Enke, Stuttgart.

    Google Scholar 

  • Scherfose V. 1989. Salzmarsch-Pflanzengesellschaften der Leybucht-Einflüsse der Rinderbeweidung und Uberflutungshäufigkeit. Drosera 89: 105-112.

    Google Scholar 

  • Seiler W. and Hahn J. 1998. Der natürliche und anthropogene Treibhauseffekt-Veränderung der chemischen Zusammensetzung der Atmosphhäre durch menschliche Aktivitäten. In: Lozan J.L., Graßl H. and Hupfer P. (eds), Das Klima des 21. Jahrhunderts. GEO, Hamburg, pp. 114-121.

    Google Scholar 

  • StatSoft 1996. Statistica für Windows (Computer-Programm-Handbuch). Tulsa StatSoft Inc., Oklahoma.

    Google Scholar 

  • Sterr H. 1998a. Auswirkung auf den Meeresspiegel. In: Lozan J.L., Graßl H. and Hupfer P. (eds), Das Klima des 21. Jahrhunderts. GEO, Hamburg, pp. 201-206.

    Google Scholar 

  • Sterr H. 1998b. Gefährdung in den Küstenregionen. In: Lozan J.L., Graßl H. and Hupfer P. (eds), Das Klima des 21. Jahrhunderts. GEO, Hamburg, pp. 248-253.

    Google Scholar 

  • Turin H. 2000. De nederlandse loopkevers. Verspreiding en oecologie (Coleoptera: Carabidae). Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij, European Invertebrate Survey-Nederland.

    Google Scholar 

  • Verschoor B.C. and Krebs B.P.M. 1995. Successional changes in a saltmarsh carabid beetle (Coleoptera, Carabidae) community after embankment of the Markiezaat area. Pedobiologia 39: 385-404.

    Google Scholar 

  • Weigmann G. 1973. Zur Okologie der Collembolen und Oribatiden im Grenzbereich Land-Meer (Collembola, Insecta-Oribatei, Acari). Zeitschrift für wissenschaftliche Zoologie Leipzig 186: 295-391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irmler, U., Heller, K., Meyer, H. et al. Zonation of ground beetles (Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the North and the Baltic Sea and the impact of the predicted sea level increase. Biodiversity and Conservation 11, 1129–1147 (2002). https://doi.org/10.1023/A:1016018021533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016018021533

Navigation