Polarizable-Vacuum (PV) Approach to General Relativity


Standard pedagogy treats topics in general relativity (GR) in terms of tensor formulations in curved space-time. An alternative approach based on treating the vacuum as a polarizable medium is presented here. The polarizable vacuum (PV) approach to GR, derived from a model by Dicke and related to the “THεμ” formalism used in comparative studies of gravitational theories, provides additional insight into what is meant by a curved metric. While reproducing the results predicted by GR for standard (weak-field) astrophysical conditions, for strong fields a divergence of predictions in the two formalisms (GR vs. PV) provides fertile ground for both laboratory and astrophysical tests to compare the two approaches.

This is a preview of subscription content, log in to check access.


  1. 1.

    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), p. 5.

    Google Scholar 

  2. 2.

    H. A. Wilson, “An electromagnetic theory of gravitation,” Phys. Rev. 17, 54–59 (1921).

    Google Scholar 

  3. 3.

    R. H. Dicke, “Gravitation without a principle of equivalence,” Rev. Mod. Phys. 29, 363–376 (1957). See also R. H. Dicke, “Mach's principle and equivalence,” in Proc. of the Intern'l School of Physics “Enrico Fermi” Course XX, Evidence for Gravitational Theories, C. Møller, ed. (Academic Press, New York, 1961), pp. 1–49.

    Google Scholar 

  4. 4.

    A. P. Lightman and D. L. Lee, “Restricted proof that the weak equivalence principle implies the Einstein equivalence principle,” Phys. Rev. D 8, 364–376 (1973).

    Google Scholar 

  5. 5.

    C. M. Will, “Gravitational red-shift measurements as tests of nonmetric theories of gravity,” Phys. Rev. D 10, 2330–2337 (1974).

    Google Scholar 

  6. 6.

    M. P. Haugan and C. M. Will, “Principles of equivalence, Eötvös experiments, and gravitational red-shift experiments: The free fall of electromagnetic systems to postpost-Coulombian order,” Phys. Rev. D 15, 2711–2720 (1977).

    Google Scholar 

  7. 7.

    C. M. Will, Theory and Experiment in Gravitational Physics, Revised Edition (Cambridge University Press, Cambridge, 1993), Sec. 2.6.

    Google Scholar 

  8. 8.

    A. M. Volkov, A. A. Izmest'ev, and G. V. Skrotskii, “The propagation of electromagnetic waves in a Riemannian space,” Sov. Phys. JETP 32, 686–689 (1971).

    Google Scholar 

  9. 9.

    W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Oxford University Press, London, 1954), p. 113.

    Google Scholar 

  10. 10.

    R. A. Alpher, “Large numbers, cosmology, and Gamow,” Am. Sci. 61, 52–58 (Jan.–Feb. 1973).

    Google Scholar 

  11. 11.

    E. R. Harrison, “The cosmic numbers,” Phys. Today 25, 30–34 (Dec. 1972).

    Google Scholar 

  12. 12.

    J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, “Search for time variation of the fine structure constant,” Phys. Rev. Lett. 82, 884–887 (1999).

    Google Scholar 

  13. 13.

    J. W. Brault, “Gravitational redshift of solar lines,” Bull. Amer. Phys. Soc. 8, 28 (1963).

    Google Scholar 

  14. 14.

    R. V. Pound and G. A. Rebka, “Apparent weight of photons,” Phys. Rev. Lett. 4, 337–341 (1960).

    Google Scholar 

  15. 15.

    R. V. Pound and J. L. Snider, “Effect of gravity on nuclear resonance,” Phys. Rev. Lett. 13, 539–540 (1965).

    Google Scholar 

  16. 16.

    H. Goldstein, Classical Mechanics (Addison–Wesley, Reading, MA, 1957), pp. 206–207.

    Google Scholar 

  17. 17.

    Y. Mizobuchi, “New theory of space-time and gravitation–Yilmaz's approach,” Hadronic J. 8, 193–219 (1985).

    Google Scholar 

  18. 18.

    C. O. Alley, “The Yilmaz theory of gravity and its compatibility with quantum theory,” in Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, D. M. Greenberger and A. Zeilinger, eds. (Vol. 755 of the Annals of the New York Academy of Sciences, New York, 1995), pp. 464–475.

    Google Scholar 

  19. 19.

    G. Schilling, “Watching the universe's second biggest bang,” Science 283, 2003–2004 (1999).

    Google Scholar 

  20. 20.

    S. L. Robertson, “Bigger bursts from merging neutron stars,” Astrophys. J. 517, L117–L119 (1999).

    Google Scholar 

  21. 21.

    V. W. Hughes, H. G. Robinson, and V. Beltran-Lopez, “Upper limit for the anisotropy of inertial mass from nuclear resonance experiments,” Phys. Rev. Lett. 4, 342–344 (1960).

    Google Scholar 

  22. 22.

    R. W. P. Drever, “A search for anisotropy of inertial mass using a free precession technique,” Phil. Mag. 6, 683–687 (1961).

    Google Scholar 

  23. 23.

    R. Collela, A. W. Overhauser, and S. A. Werner, “Observation of gravitationally induced quantum interference,” Phys. Rev. Lett. 34, 1472–1474 (1975).

    Google Scholar 

  24. 24.

    H. E. Puthoff, “SETI, the velocity-of-light limitation, and the Alcubierre warp drive: An integrating overview,” Phys. Essays 9, 156–158 (1996).

    Google Scholar 

  25. 25.

    R. d'E. Atkinson, “General relativity in Euclidean terms,” Proc. Roy. Soc. 272, 60–78 (1962).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Puthoff, H.E. Polarizable-Vacuum (PV) Approach to General Relativity. Foundations of Physics 32, 927–943 (2002). https://doi.org/10.1023/A:1016011413407

Download citation

  • gravitation
  • general relativity
  • vacuum
  • velocity of light
  • vacuum polarization