Advertisement

Foundations of Physics

, Volume 32, Issue 6, pp 927–943 | Cite as

Polarizable-Vacuum (PV) Approach to General Relativity

  • H. E. Puthoff
Article

Abstract

Standard pedagogy treats topics in general relativity (GR) in terms of tensor formulations in curved space-time. An alternative approach based on treating the vacuum as a polarizable medium is presented here. The polarizable vacuum (PV) approach to GR, derived from a model by Dicke and related to the “THεμ” formalism used in comparative studies of gravitational theories, provides additional insight into what is meant by a curved metric. While reproducing the results predicted by GR for standard (weak-field) astrophysical conditions, for strong fields a divergence of predictions in the two formalisms (GR vs. PV) provides fertile ground for both laboratory and astrophysical tests to compare the two approaches.

gravitation general relativity vacuum velocity of light vacuum polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), p. 5.Google Scholar
  2. 2.
    H. A. Wilson, “An electromagnetic theory of gravitation,” Phys. Rev. 17, 54–59 (1921).Google Scholar
  3. 3.
    R. H. Dicke, “Gravitation without a principle of equivalence,” Rev. Mod. Phys. 29, 363–376 (1957). See also R. H. Dicke, “Mach's principle and equivalence,” in Proc. of the Intern'l School of Physics “Enrico Fermi” Course XX, Evidence for Gravitational Theories, C. Møller, ed. (Academic Press, New York, 1961), pp. 1–49.Google Scholar
  4. 4.
    A. P. Lightman and D. L. Lee, “Restricted proof that the weak equivalence principle implies the Einstein equivalence principle,” Phys. Rev. D 8, 364–376 (1973).Google Scholar
  5. 5.
    C. M. Will, “Gravitational red-shift measurements as tests of nonmetric theories of gravity,” Phys. Rev. D 10, 2330–2337 (1974).Google Scholar
  6. 6.
    M. P. Haugan and C. M. Will, “Principles of equivalence, Eötvös experiments, and gravitational red-shift experiments: The free fall of electromagnetic systems to postpost-Coulombian order,” Phys. Rev. D 15, 2711–2720 (1977).Google Scholar
  7. 7.
    C. M. Will, Theory and Experiment in Gravitational Physics, Revised Edition (Cambridge University Press, Cambridge, 1993), Sec. 2.6.Google Scholar
  8. 8.
    A. M. Volkov, A. A. Izmest'ev, and G. V. Skrotskii, “The propagation of electromagnetic waves in a Riemannian space,” Sov. Phys. JETP 32, 686–689 (1971).Google Scholar
  9. 9.
    W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Oxford University Press, London, 1954), p. 113.Google Scholar
  10. 10.
    R. A. Alpher, “Large numbers, cosmology, and Gamow,” Am. Sci. 61, 52–58 (Jan.–Feb. 1973).Google Scholar
  11. 11.
    E. R. Harrison, “The cosmic numbers,” Phys. Today 25, 30–34 (Dec. 1972).Google Scholar
  12. 12.
    J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, “Search for time variation of the fine structure constant,” Phys. Rev. Lett. 82, 884–887 (1999).Google Scholar
  13. 13.
    J. W. Brault, “Gravitational redshift of solar lines,” Bull. Amer. Phys. Soc. 8, 28 (1963).Google Scholar
  14. 14.
    R. V. Pound and G. A. Rebka, “Apparent weight of photons,” Phys. Rev. Lett. 4, 337–341 (1960).Google Scholar
  15. 15.
    R. V. Pound and J. L. Snider, “Effect of gravity on nuclear resonance,” Phys. Rev. Lett. 13, 539–540 (1965).Google Scholar
  16. 16.
    H. Goldstein, Classical Mechanics (Addison–Wesley, Reading, MA, 1957), pp. 206–207.Google Scholar
  17. 17.
    Y. Mizobuchi, “New theory of space-time and gravitation–Yilmaz's approach,” Hadronic J. 8, 193–219 (1985).Google Scholar
  18. 18.
    C. O. Alley, “The Yilmaz theory of gravity and its compatibility with quantum theory,” in Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, D. M. Greenberger and A. Zeilinger, eds. (Vol. 755 of the Annals of the New York Academy of Sciences, New York, 1995), pp. 464–475.Google Scholar
  19. 19.
    G. Schilling, “Watching the universe's second biggest bang,” Science 283, 2003–2004 (1999).Google Scholar
  20. 20.
    S. L. Robertson, “Bigger bursts from merging neutron stars,” Astrophys. J. 517, L117–L119 (1999).Google Scholar
  21. 21.
    V. W. Hughes, H. G. Robinson, and V. Beltran-Lopez, “Upper limit for the anisotropy of inertial mass from nuclear resonance experiments,” Phys. Rev. Lett. 4, 342–344 (1960).Google Scholar
  22. 22.
    R. W. P. Drever, “A search for anisotropy of inertial mass using a free precession technique,” Phil. Mag. 6, 683–687 (1961).Google Scholar
  23. 23.
    R. Collela, A. W. Overhauser, and S. A. Werner, “Observation of gravitationally induced quantum interference,” Phys. Rev. Lett. 34, 1472–1474 (1975).Google Scholar
  24. 24.
    H. E. Puthoff, “SETI, the velocity-of-light limitation, and the Alcubierre warp drive: An integrating overview,” Phys. Essays 9, 156–158 (1996).Google Scholar
  25. 25.
    R. d'E. Atkinson, “General relativity in Euclidean terms,” Proc. Roy. Soc. 272, 60–78 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • H. E. Puthoff
    • 1
  1. 1.Institute for Advanced Studies at AustinAustin

Personalised recommendations