Skip to main content
Log in

Hydrotropic Solubilization— Mechanistic Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study examines the mechanism of hydrotropic solubilization using the riboflavin-nicotinamide system. The most commonly proposed mechanism for hydrotropic solubilization is complexation, and therefore, is investigated. Additionally, since nicotinamide and several other hydrotropic agents self-associate in aqueous solution, the possibility that self-association of the hydrotropic agent is important mechanistically is examined by studying the effect of temperature on hydrotropic ability. Researchers have shown that the degree of self-association decreases with increasing temperature. Therefore, if temperature affects the solubilizing capacity of nicotinamide, self-association must be mechanistically significant.

Methods. The complexation hypothesis is tested by looking at nicotinamide's ability to quench riboflavin fluorescence and by examining changes in the UV/Vis spectrum of riboflavin upon addition of nicotinamide. The solubility of riboflavin in nicotinamide solutions as a function of temperature is determined to assess the impact of self-association on hydrotropicity.

Results. Nicotinamide does not alter the intrinsic fluorescence of riboflavin nor are changes indicative of complexation observed in the UV/Vis spectrum. Temperature does have an effect on the hydrotropic ability of nicotinamide. Specifically, as temperature increases, the solubilizing capacity of nicotinamide decreases.

Conclusions. Because nicotinamide is unable to quench riboflavin fluorescence, and does not produce significant spectral changes, complexation of nicotinamide and riboflavin does not occur. However, since increasing temperature causes a decrease in the hydrotropic ability of nicotinamide and in its degree of self-association, it is proposed here that the self-association of nicotinamide impacts the hydrotropic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Attwood and A. T. Florence. Pharmacy and Biology., Chapman and Hall, New York, 1983.

    Google Scholar 

  2. A. D. Woolfson, D. F. McCafferty, and A. P. Launchbury. Int. J. Pharm. 34:17–22 (1986).

    Google Scholar 

  3. G. A. Braqzeau and H. L. Fung. J. Pharm. Sci. 79:393–397 (1990).

    Google Scholar 

  4. D. E. Guttman and M. Y. Althalye. J. Am. Pharm. Assoc. (Sci. Ed.) 49:687–691 (1960).

    Google Scholar 

  5. R. A. Harte and J. L. Chen. J. Am. Pharm. Assoc. (Sci. Ed.) 38:568–570 (1949).

    Google Scholar 

  6. S. P. Shah and D. R. Flanagan. J. Pharm. Sci. 79:889–892 (1990).

    Google Scholar 

  7. S. A. Ibrahim, H. O. Ammar, A. A. Kasem, and S. S. Abu-Zaid. Pharmazie 34:809–812 (1979).

    Google Scholar 

  8. N. K. Jain, V. V. Patel, and L. N. Taneja. Pharmazie 43:194–196 (1988).

    Google Scholar 

  9. D. V. Frost. J. Am. Chem. Soc. 69:1064–1065 (1947).

    Google Scholar 

  10. J. Boylan. Liquids. In: L. Lachman, H. A. Lieberman, and J. L. Kanig (eds.) The Theory and Practice of Industrial Pharmacy. 3rd ed. Lea and Febiger. Phila. PA. 1986, p. 246.

    Google Scholar 

  11. S. Ueda. Chem. Pharm. Bull. 14:39–45 (1996).

    Google Scholar 

  12. D. Guttman and T. Higuchi. J. Am. Pharm. Assoc. (Sci. Ed.) 46:4–10 (1957).

    Google Scholar 

  13. A. L. Thakkar, L. G. Tensmeyer, and W. L. Wilham. J. Pharm. Sci. 60:1267–1269 (1971).

    Google Scholar 

  14. D. Attwood and O. K. Udeala. J. Pharm. Sci. 65:1053–1056 (1976).

    Google Scholar 

  15. A. M. Saleh, L. K. El-Khordagui, and A. T. Florence. Arch. Pharm. Chem. (Sci. Ed.) 14:64–68 (1986).

    Google Scholar 

  16. W. N. Charman, C. S. C. Lai, B. D. Finnin, and B. L. Reed. Pharm. Res. 8:1144–1150 (1991).

    Google Scholar 

  17. B. Birdsall, J. Feeney, and P. Partington. J. Chem. Soc. Perkin Trans. 2:2145–2151. (1973).

    Google Scholar 

  18. F. Kopecký, M. Vojteková, and M. Bednárová-Hyttnerová. Coll. Czech. Chem. Comm. 43:37–46 (1978).

    Google Scholar 

  19. M. A. Hussain, R. L. DiLuccio, and M. B. Maurin. J. Pharm. Sci. 82:77–79 (1993).

    Google Scholar 

  20. J. Truelove, R. Bawarshi-Nassar, N. R. Chen, and A. Hussain. Int. J. Pharm. 19:17–25 (1984).

    Google Scholar 

  21. A. A. Rasool, A. A. Hussain, and L. W. Dittert. J. Pharm. Sci. 80:387–393 (1991).

    Google Scholar 

  22. A. X. Chen, S. W. Zito, and R. A. Nash. Pharm. Res. 11:398–401 (1994).

    Google Scholar 

  23. R. A. Kenley, S. E. Jackson, J. S. Winterle, Y. Shunko, and G. C. Visor. J. Pharm. Sci. 75:648–653 (1986).

    Google Scholar 

  24. Y. E. Hazma and A. N. Paruta. Drug Dev. Ind. Pharm. 11:1577–1596 (1985).

    Google Scholar 

  25. R. E. Coffman and D. O. Kildsig. unpublished results.

  26. M. A. Slifkin Biochim Biophys. Acta. 103:365–373 (1965).

    Google Scholar 

  27. D. A. Skoog. Principles of Instrumental Analysis. 3rd ed. Saunders College Publishing. Phila, PA., 1985, p. 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffman, R.E., Kildsig, D.O. Hydrotropic Solubilization— Mechanistic Studies. Pharm Res 13, 1460–1463 (1996). https://doi.org/10.1023/A:1016011125302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016011125302

Navigation