Skip to main content
Log in

TEM Study of the Effect of Y on the Scale Microstructures of Cr2O3- and Al2O3-Forming Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This study was undertaken to investigate and compare the effects of a yttrium addition on the oxide scale development of α-Cr2O3- and α-Al2O3-forming alloys under isothermal oxidation conditions. The alloys had a nominal composition (in wt.%) of Ni–30Cr, Ni–30Cr–0.5Y, Ni–30Cr–5Al, and Ni–30Cr– 5–Al–0.5Y. They were oxidized in air for 50 hr at 1000°C. The scale microstructures were characterized using cross-sectional transmission-electron microscopy combined with energy-dispersive X-ray spectroscopy. It was observed that the scale thickness decreases and the scale adherence increases due to the Y addition. The growth direction of α-Cr2O3 scale changes from predominately outward to inward while countercurrent diffusion within α-Al2O3 is replaced by inward diffusion due to Y modification. It is considered that the ability of Y to scavenge sulfur from the alloy and its segregation to the oxide grain boundaries primarily account for most of its beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. B. Pfeil, UK Patent Specification 459848 (1937).

  2. D. P. Whittle and J. Stringer, Phil. Trans. R. Soc. London A295, 309 (1980).

    Google Scholar 

  3. F. H. Stott, Rep. Prog. Phys. 50, 861 (1987).

    Google Scholar 

  4. K. Przybylski and G. J. Yurek, Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  5. J. Jedlinski, Solid State Phenomenon 21/22, 335 (1992).

    Google Scholar 

  6. G. C. Wood and F. H. Stott, in High Temperature Corrosion, R. A. Rapp, ed. (NACE-6, Houston, Texas, 1983), p. 227.

    Google Scholar 

  7. H. M. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982).

    Google Scholar 

  8. A. M. Huntz, in The Role of Actiûe Elements in the Oxidation Behaûior of Metals and Alloys, E. Lang, ed. (Elsevier Appl. Sci., London/New York, 1989), p. 81.

    Google Scholar 

  9. A. M. Huntz, Mater. Sci. Eng. 87, 251 (1987).

    Google Scholar 

  10. F. H. Stott and G. C. Wood, Mater. Sci. Eng. 87, 267 (1987).

    Google Scholar 

  11. J. Stringer, B. A. Wilcox, and R. I. Jaffe, Oxid. Met. 5, 11 (1972).

    Google Scholar 

  12. O. T. Goncel, J. Stringer, and D. P. Whittle, Corros. Sci. 18, 701 (1978).

    Google Scholar 

  13. S. B. Newcomb, C. B. Boothroyd, and W. M. Stobbs, J. Microsc. 140, 195 (1985).

    Google Scholar 

  14. D. F. Mitchell, R. J. Hussey, and M. J. Graham, Proc. 3rd JIM Intern. Symp. Trans. Jpn. Inst. Met. 24, 121 (1983).

    Google Scholar 

  15. M. J. Graham, Proc. 9th Intern. Congr. Metallic Corros. Toronto, 1 (1984).

  16. C. Cotell, K. Przybylski, and G. J. Yurek, Proceedings Symposium on Fundamental Aspects of High Temperature Corrosion II, D. A. Shores and G. J. Yurek, eds. (The Electrochemical Society, Pennington, NJ, 1986), p. 103.

    Google Scholar 

  17. M. J. Graham, J. I. Eldridge, D. F. Mitchell, and R. J. Hussey, Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  18. T. A. Ramanarayanan and R. Petkovic-Luton, Ber. Bunseng. Phys. Chem. 89, 402 (1985).

    Google Scholar 

  19. H. M. Hindam and D. P. Whittle, J. Electrochem. Soc. 129, 1147 (1982).

    Google Scholar 

  20. J. M. Francis and W. H. Whitlow, J. Iron Steel Inst. 204, 355 (1966).

    Google Scholar 

  21. J. E. Antill and K. A. Peakall, J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  22. Y. Ikeda, K. Nii, and K. Yoshihara, Proc. JIMIS-3 High Temperature Corrosion, Trans. J. Inst. Met., Suppl., p. 207 (1983).

  23. P. Y. Hou and J. Stringer, Oxid. Met. 38, 323 (1992).

    Google Scholar 

  24. J. J. Burton, B. J. Berkowitz, and R. D. Kane, Metall. Trans. A 10A, 677 (1979).

    Google Scholar 

  25. C. L. Briant and R. A. Mulford, Metall. Trans. A. 13A, 745 (1982).

    Google Scholar 

  26. R. P. Messmer and C. L. Briant, Acta Metall. 30, 457 (1982).

    Google Scholar 

  27. C. L. White, J. H. Schneibel, and R. A. Padgett, Metall. Trans. A 14, 595 (1983).

    Google Scholar 

  28. F. A. Golightly, F. H. Stott, and G. C. Wood, J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  29. K. P. R. Reddy, J. L. Smialek, and R. A. Cooper, Oxid. Met. 17, 429 (1982).

    Google Scholar 

  30. P. Choquet, Doctorate Thesis, University of Paris XI (1987).

  31. P. Choquet, C. Indrigo, and R. Mevrel, Mater. Sci. Eng. 88, 97 (1987).

    Google Scholar 

  32. M. Le Gall, B. Lesage, C. Monty, and J. Bernardini, J. Mater. Sci. 30, 201 (1995).

    Google Scholar 

  33. A. Kumar, M. Nasrallah, and D. L. Douglas, Oxid. Met. 8, 227 (1974).

    Google Scholar 

  34. I. M. Allam, D. P. Whittle, and J. Stringer, Oxid. Met. 12, 35 (1978).

    Google Scholar 

  35. J. Jedlinski and S. Mrowec, Mater. Sci. Eng. 87, 281 (1987).

    Google Scholar 

  36. A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein, Metall. Trans. A 16A, 1164 (1985).

    Google Scholar 

  37. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein, Metall. Trans. A 17A, 923 (1986).

    Google Scholar 

  38. J. G. Smeggil, N. S. Bornstein, and M. A. DeCrescente, Oxid. Met. 30, 259 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ul-Hamid, A. TEM Study of the Effect of Y on the Scale Microstructures of Cr2O3- and Al2O3-Forming Alloys. Oxidation of Metals 58, 23–40 (2002). https://doi.org/10.1023/A:1016008406774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016008406774

Navigation