Skip to main content
Log in

Population growth kinetics and bulk membrane lipid alterations in Tetrahymena pyriformis: Exposure to pentachlorophenol

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

This study describes effects of exposure of the freshwater ciliate Tetrahymena pyriformis to the "classic" weak acid respiratory uncoupler pentachlorophenol (PCP) on the population growth kinetics and membrane lipid profiles. The assessment of growth kinetics of naive populations exposed to PCP, at concentrations eliciting <50% growth inhibition, showed generation times of exposed cultures similar to generation times of controls but preceded by a short lag phase (<2 h). Assessment of exposed cultures exhibiting >50% growth inhibition revealed generation times that increased with increasing concentrations of toxicant. In addition, the relative percentages of selected fatty acid methyl esters (FAMEs) in both pellicle and mitochondrial membranes were examined. Upon exposure to PCP the relative percentages of FAMEs 12:0, 14:0, 16:0, 16:1, and 18:0 did not change. However, with exposure to PCP a decrease was observed for FAMEs 15:0 and 17:0. Conversely, with PCP exposure there was an increase in FAME 18:1. A comparison of these results with those elicited upon exposure to the model narcotic 1-octanol reveals marked differences in both growth kinetics and fatty acid shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy SG, Mackay D, McCarty LS. Volume fraction correlation for narcosis in aquatic organisms: the key role of partitioning. Environ ToxicolChem. 1988:7:469-81.

    Google Scholar 

  • Bearden AP, Gregory BW, Schultz TW. Population growth kinetics of Tetrahymena pyriformis exposed to selected nonpolar narcotics. Arch Environ Contam. 1997:33:401-6.

    Article  CAS  Google Scholar 

  • Bearden AP, Sinks GD, Schultz TW. Acclimation to sublethal exposure to a model nonpolar narcotic: population growth kinetics and membrane lipid alterations in Tetrahymena pyriformis. AquaticToxicol. 1999:46:11-21.

    CAS  Google Scholar 

  • Beavan MJ, Charpentier C, Rose AH. Production and toler-ance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCLC 431. J Gen Microbiol. 1982:128:1447-55.

    Google Scholar 

  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959:37:911-7.

    PubMed  CAS  Google Scholar 

  • Cajina-Quezada M, Schultz TW. Structure-toxicity relation-ships for selected weak acid respiratory uncouplers. Aquatic Toxicol. 1990:17:239-52.

    Article  CAS  Google Scholar 

  • Franks NB, Lieb WR. Mechanisms of general anesthesia. Environ Health Perspect. 1990:87:199-205.

    PubMed  CAS  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White DC. Phospholi-pid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estruarine sediments. FEMS Microbiol Ecol. 1985:31:147-58.

    CAS  Google Scholar 

  • Heipeper HJ, deBont JAM. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appi Environ Microbiol. 1994; 60:4440-4.

    Google Scholar 

  • Ingram L. Adaptation of membrane lipids to alcohols. J Bacteriol. 1976:125:670-8.

    PubMed  CAS  Google Scholar 

  • Larsen J, Schultz TW, Rasmussen L, Hoofman R, Pauli W. Progress in an ecotoxicological standard protocol with protozoa: results from a pilot ring test with Tetmhymena pyriformis. Chemosphere. 1997:35:1023-41.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SGA, Dilger J. Transport of protons across membranes by weak acids. Physiol Rev. 1980:60:825-63.

    PubMed  CAS  Google Scholar 

  • Mitchell P. Chemiosmotic coupling in oxidative and photosyn-thetic phosphorylation. Biol Rev. 1966:41:445-502.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson JR. pH-dependent effects of 2,4-dinitrophenol (DNP) on proliferation, endocytosis, fine structure and DNP resistance in Tetrahymena. J Eukaryot Microbiol. 1995;42: 248-55.

    PubMed  CAS  Google Scholar 

  • Nozawa Y, Thompson GA. Studies of membrane formation in Tetrahymena pyriformis: II. Isolation and lipid analysis of cell fractions. J Cell Biol. 1971:49:712-21.

    Article  PubMed  CAS  Google Scholar 

  • Ramesha CS, Thompson GA. Changes in lipid composition and physical properties of Tetrahymena ciliary membranes following low-temperature acclimation. Biochemistry. 1982; 21:3612-7.

    Article  PubMed  CAS  Google Scholar 

  • SAS. SAS/STAT User's Guide, version 6, 4th edn,Vol. 2. Gary, NC: SAS Institute, Inc.; 1989:846.

  • Schultz TW. TETRATOX: Tetrahymena pyriformis population growth impairment endpoint: a surrogate for fish lethality. Toxicol Methods. 1997:7:289-309.

    Article  CAS  Google Scholar 

  • Schultz TW, Cronin MTD. QSARs for weak acid respiratory uncouplers to Vibrio fischeri. Environ Toxicol Chem. 1997; 16:357-60.

    Article  CAS  Google Scholar 

  • Schultz TW, Seward JR. Health-effects related structure-toxi-city relationships: a paradigm for the millennium. Sci Total Environ. 2000:249:73-84.

    Article  PubMed  CAS  Google Scholar 

  • Standard Methods for the Examination of Water and Waste-water. Bioassay procedures for ciliated protozoa (Tentative). Prepared and published jointly by American Public Health Association, American Water Works Association and Water Olution Control. 1976:795-62.

  • Terada H. Uncouplers of oxidative phosphorylation. Environ Health Perspect. 1990:87:213-8.

    PubMed  CAS  Google Scholar 

  • Umeki S, Fukushima H, Nozawa Y. Variations in the activity of fatty acyl-CoA desaturates and electron-transport compo-nents in Tetrahymena microsomes with temperature and age of culture. J Therm Biol. 1983:8:353-60.

    Article  CAS  Google Scholar 

  • van Wezel AP, Opperhuizen A. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Crit Rev Toxicol. 1995:25:255-79.

    PubMed  CAS  Google Scholar 

  • Weber FJ, Isken S, deBont JAM. Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology. 1994:140:2013-7.

    Article  PubMed  CAS  Google Scholar 

  • White DC, Davis WM, Nichols JS, King JD, Bobbie RJ. Determination of sedimentary microbial biomass by extrac-table lipid phosphate. Oecologia. 1979:40:51-62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, T., Sinks, G. & Bearden-Lowit, A. Population growth kinetics and bulk membrane lipid alterations in Tetrahymena pyriformis: Exposure to pentachlorophenol. Cell Biol Toxicol 18, 271–278 (2002). https://doi.org/10.1023/A:1016007128759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016007128759

Navigation