Skip to main content
Log in

Orthogonal Decompositions in Hilbertian Subspaces, Error Functions and Optimal Extensions of Interpolation Systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We address the question of optimal extensions of a fixed set S⊂Ω of measurement points for an interpolation system in a reproducing kernel Hilbert space of R Ω. By considering the interpolation error function obtained from the reproducing kernel, we introduce different criteria of optimal extensions. We highlight the orthogonal decomposition of the space based on the subspace associated with the set S. The connection to the classical Schur decomposition of the Gram matrix of the interpolation problem is established. All the theory extends to conditionally positive functions and for this case, we give a result on the spectrum of the matrix of the interpolation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  2. M. Atteia, Hilbertian Kernels and Spline Functions (North-Holland, Amsterdam, 1992).

    Google Scholar 

  3. T. Bergot, Adaptive observations during FASTEX: A systematic survey of the impact of upstream flights, Quart. J. Roy. Meteor. Soc. 125 (1999) 3271–3298.

    Google Scholar 

  4. A. Dean and D. Voss, Design and Analysis of Experiments (Springer, Berlin, 1999).

    Google Scholar 

  5. J.W. Demmel, On condition numbers and the distance to the nearest ill-posed problem, Numer. Math. 51 (1987) 251–289.

    Google Scholar 

  6. M. Duc-Jacquet, Approximation des fonctionnelles linéaires sur les espaces hilbertiens autoreproduisants, Ph.D. thesis, Grenoble (1973).

  7. N. Dyn, D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput. 7 (1986) 639–659.

    Google Scholar 

  8. W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  9. R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambrigde, 1985).

    Google Scholar 

  10. A. I. Khuri, Advanced Calculus with Applications in Statistics (Wiley-Interscience, New York, 1993).

    Google Scholar 

  11. P.-J. Laurent, Approximation et Optimisation (Hermann, Paris, 1972).

    Google Scholar 

  12. W.A. Light, Some aspects of radial basis function approximation, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, Dordrecht, 1992), pp. 163–190.

    Google Scholar 

  13. W.A. Light and H. Wayne, On power functions and error estimates for radial basis function interpolation, J. Approx. Theory 92 (1998) 245–266.

    Google Scholar 

  14. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988) 77–89.

    Google Scholar 

  15. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions. II, Math. Comp. 54 (1990) 211–230.

    Google Scholar 

  16. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11–22.

    Google Scholar 

  17. F.J. Narcowich and J.D. Ward, Norms of inverses and condition number for matrices associated with scattered data, J. Approx. Theory 64 (1991) 69–94.

    Google Scholar 

  18. F.J. Narcowich and J.D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-basis interpolation matrices, J. Approx. Theory 69 (1992) 84–109.

    Google Scholar 

  19. M.J.D. Powell, The theory of radial basis functions in 1990, in: Advances in Numerical Analysis, Vol. 2, ed. W.A. Light (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  20. R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp. 68 (1999) 201–216.

    Google Scholar 

  21. R. Schaback, Error estimates and condition numbers for radial basis functions interpolation, Adv. Comput. Math. 3 (1995) 251–264.

    Google Scholar 

  22. R. Schaback and H. Wendland, Numerical techniques based on radial basis functions, in: Curves and Surface Fitting, eds. A. Cohen, C. Rabut and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 2000) pp. 359–374.

    Google Scholar 

  23. G.W. Stewart and J.-g. Sun, Matrix Perturbation Theory (Academic Press, New York, 1990).

    Google Scholar 

  24. J.F. Traub, G.W. Wasilkowski and H. Wosniakowski, Information-Based Complexity (Academic Press, New York, 1988).

    Google Scholar 

  25. G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amodei, L. Orthogonal Decompositions in Hilbertian Subspaces, Error Functions and Optimal Extensions of Interpolation Systems. Numerical Algorithms 30, 157–184 (2002). https://doi.org/10.1023/A:1016003803996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016003803996

Navigation