Skip to main content
Log in

Design of Biological Equivalence Programs for Therapeutic Biotechnology Products in Clinical Development: A Perspective

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The determination of biological equivalence requires that studies are conducted to establish that two molecules, two formulations, or two dosing regimens, for example, are indistinguishable with respect to safety and efficacy profiles that have been previously established. The criteria that are used to establish biological equivalence will depend on the nature of the change (e.g., molecular, process, formulation), the stage of the development program, the duration of treatment, and the intended clinical indications. Key components of an equivalence program include chemical characterization, in vitro and in vivo bioactivity against reference material, pharmacokinetics, and safety. Special considerations for patient populations, endogenous concentrations, environmental factors, immunogenicity, assay methodology, biochemical identity, pharmacodynamic equivalence, and statistical methodology are discussed. In addition, the role of preclinical in vivo assessments is addressed. Specific case studies provide insight into the varied nature of approaches that are currently employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. J. D. Green. In P. F. D'Arcy and D. W. G. Harron (eds.) Proceedings of the Third International Conference on Harmonization, Yokohama, 1995, Queen's University of Belfast Press, Northern Ireland, 1996, pp. 230–236.

    Google Scholar 

  2. R. Williams. (abstract). Bio-International '92. Conference on Bioavailability, Bioequivalence and Pharmacokinetic studies.

  3. L. Z. Benet. In K. Midha and H. Blume (eds.), Bio-International. Bioavailability, bioequivalence, and Pharmacokinetics. Medpharm, Stuttgart, 1993. pp. 27–37.

    Google Scholar 

  4. V. Steinijans, D. Hauschke, and H. Jonkman. Clin. Pharmacokinet. 22:247–253 (1992).

    Google Scholar 

  5. H. Blume and K. Midha. Pharm. Res. 10:1806–1811 (1993).

    Google Scholar 

  6. Proceedings of the FDA bioequivalence hearings, Docket number 86N-0251, Washington, DC., September 29–October 1, 1986.

  7. Report by the bioequivalence task force on recommendations from the bioequivalence hearings conducted by the Food and Drug Administration, 86N-0251, RPT00002, pp. 19–21, January 1988.

  8. H. Blume and K. Midha (eds.). Bio-International 2. Bioavailability, Bioequivalence, and Pharmacokinetic Studies. Medpharm, Stuttgart, 1995.

    Google Scholar 

  9. A. Supersaxo, W. Hein, H. Gallati, and H. Steffen. Pharm. Res. 5:472–476 (1988).

    Google Scholar 

  10. A. Supersaxo, W. Hein, H. and Steffen. Pharm. Res. 7:167–169 (1990).

    Google Scholar 

  11. J. Kahn, J. D. Allan, T. Hodges, L. Kaplan, C. Arri, H. Fitch, A. Izu, J. Mordenti, S. Sherwin, J. Groopman, and P. Volberding. Annals of Internal Medicine 112:254–261 (1990).

    Google Scholar 

  12. W. Saal, H-J. Glowania, W. Hengst, and J. Happ. Fertility and Sterility 56:225–229 (1991).

    Google Scholar 

  13. J. Mordenti, S. A. Chen, and B. Ferraiolo. In A. H. C. Kung, R. A. Baughman, and J. W. Larrick (eds.), Protein Therapeutics: Pharmacokinetics and Pharmacodynamics., W. H. Freeman and company, New York, 1993, pp. 187–199.

    Google Scholar 

  14. S. Beshyah, V. Anyaoku, R. Niththyananthan, P. Sharp, and D. Johnston. Clin. Endocrinol. 35:409–412 (1991).

    Google Scholar 

  15. T. Laursen, J. Jorgensen, and J. Christiansen. Clin. Endocrinol. 40:373–378 (1994).

    Google Scholar 

  16. S. Blunt, R. Clayton, and W. Butt. Clinical Endocrinology 25:589–596 (1986).

    Google Scholar 

  17. P. Hildebrandt, L. Sestoft, and S. Nielsen. Diabetes Care 6:459–462 (1983).

    Google Scholar 

  18. J. Thow and P. Home. Br. Med. Journal 301:3–4 (1990).

    Google Scholar 

  19. H. Kirchner, A. Korfer, P. Evers, M. M. Szamel, J. Knuver-Hopf, H. Mohr, C. R. Franks, U. Pohl, K. Resch, M. Hadam, H. Poliwoda, and J. Atzpodien. Cancer 67:1862–1864 (1991).

    Google Scholar 

  20. K. Lundin, L. Berger, F. Blomberg, and P. Wilton. Acta Paediatr. Scand. (suppl). 372:167–168 (1991).

    Google Scholar 

  21. C. M. Zwickl, K. S. Cocke, R. N. Tamura, L. M. Holzhausen, G. T. Brophy, P. H. Bick, and D. Wierda. Fundamental and Applied Toxicology 16:275–287 (1991).

    Google Scholar 

  22. R. Dillman. Antibody Immunoconj. Radiopharm. 3:1–15. (1990).

    Google Scholar 

  23. E. Muchmore, M. Milewski, A. Varki, and S. Diaz. J. Biol. Chem. 264:20216–20223 (1989).

    Google Scholar 

  24. Y. Kozutsumi, T. Kawano, H. Kawasaki, K. Suzuki, T. Yamakawa, and A. Suzuki. J. Biochem. 110:429–435 (1991).

    Google Scholar 

  25. V. Shah, K. Midha, S. Dighe, I. McGilveray, J. Skelly, A. Yacobi, T. Layloff, C. Viswanathan, C. E. Cook, R. McDowall, K. Pittman, and S. Spector. Pharm. Res. 9:588–592 (1992).

    Google Scholar 

  26. L. Boscato and M. Stuart. Clin. Chem. 34:27–33 (1988).

    Google Scholar 

  27. T. Weber, K. Kapyaho, and P. Tanner. Scand. J. Clin. Lab. Invest. 50, Suppl 201:77–82 (1990).

    Google Scholar 

  28. A. Chen, D. Baker, and B. Ferraiolo. In P. Garzone, W. Colburn, and M. Mokotoff (eds.), Peptides, Peptoids, and Proteins. Harvey Whitney Books, Cincinnati, OH, 1991, pp. 54–71.

    Google Scholar 

  29. D. Eaton, P. Hass, L. Riddle, J. Mather, M. Wiebe, T. Gregory, and G. Vehar. J. Bio. Chem. 262:3285–90 (1987).

    Google Scholar 

  30. R. Baughman, Jr. In B. Sobel, D. Collen, E. Grossbard (eds.) Tissue Plasminogen Activator in Thrombolytic Therapy, Marcel Dekker, Inc., New York, 1987, pp. 41–53.

    Google Scholar 

  31. S. Gauny, J. Andya, J. Thomson, J. Young, and J. Winkelhake. Hum. Antibod. Hybridomas 2:33–38 (1991).

    Google Scholar 

  32. G. Ashwell and A. Morell. In A. Meister (ed.) Advances in Enzymology and Related Areus of Molecular Biology, John Wiley and Sons, New York, 1974, pp. 99–128.

    Google Scholar 

  33. G. Ashwell and J. Harford. Ann. Rev. Biochem. 51:531–54 (1982).

    Google Scholar 

  34. D. Barbeau. Controlled Release Newsletter, Controlled Release Society, Inc., Deerfield, IL, July 1990, pp. 6–8.

    Google Scholar 

  35. M. Fukuda, H. Sasaki, L. Lopez, and M. Fukuda. Blood 73:84–89 (1989).

    Google Scholar 

  36. W. Blum and D. Gupta. J. Endocr. 105:29–37 (1985).

    Google Scholar 

  37. T. Sareneva, K. Cantell, L. Pyhala, J. Pirhonen, and I. Julkunen. J. Interferon Res. 13:267–269 (1993).

    Google Scholar 

  38. J. Henkin, D. Dudlak, D. Beebe, and L. Sennello. Thrombosis Research 63:215–225 (1991).

    Google Scholar 

  39. M. Mattes. J. Nat. Cancer Inst. 79:855–863 (1987).

    Google Scholar 

  40. M. Manning, K. Patel, and R. Borchardt. Pharm. Res. 6:903–917 (1989).

    Google Scholar 

  41. J. Cleland, M. Powell, and S. Shire. Crit. Rev. Therap. Drug Carrier Systems 10:3007–377 (1993).

    Google Scholar 

  42. S. Li, C. Schoneich, and R. Borchardt. Biotech. and Bioengineer. 48:490–500 (1995b).

    Google Scholar 

  43. C. Schmelzer, L. Burton, W.-P. Chan, E. Martin, C. Gorman, E. Canova-Davis, V. Ling, M. Slikowski, G. McCray, J. Briggs, T. Nguyen, and G. Polastri. J. Neurochem. 59:1675–1683, (1992).

    Google Scholar 

  44. C. Drinkwater, P. Barker, U. Suter, and E. Shooter. J. Biol. Chem. 268:23202–207 (1993).

    Google Scholar 

  45. A. Shih, G. Laramee, C. Schmelzer, L. Burton, and J. Winslow. J. Biol. Chem. 269:27679–686 (1994).

    Google Scholar 

  46. R. Baxter and J. Martin. Biochem. Biophys. Res. Commun. 147:408–415 (1987).

    Google Scholar 

  47. A. Lord, S. Bastian, L. Read, P. Walton, and F. Ballard. J. Endocrin. 140:475–482 (1994).

    Google Scholar 

  48. A. Rescigno. Pharm. Res. 9:925–928 (1992).

    Google Scholar 

  49. W. Hauck and S. Anderson. J. Pharmacokin. Biopharm. 22:551–564 (1994).

    Google Scholar 

  50. S. Chen, A. Izu, J. Mordenti, and A. Rescigno. Am. J. Therapeutics 2:190–195 (1995).

    Google Scholar 

  51. A. L. Gould. J. Pharmacokin. Biopharm. 23:57–86 (1995).

    Google Scholar 

  52. L. Endrenyi and P. Al-Shaikh. Pharm. Res. 12:1856–1864 (1995).

    Google Scholar 

  53. A. W. Boddy, F. C. Snikeris, R. O. Kringle, G. C. G. Wei, J. A. Oppermann, and K. K. Midha. Pharm. Res. 12:1865–1868 (1995).

    Google Scholar 

  54. R. P. Basson, B. J. Cerimele, K. A. DeSante, and D. C. Howey. Pharm. Res. 13:324–328 (1996).

    Google Scholar 

  55. T. N. Tozer, F. Y. Bois, W. W. Hauck, M. L. Chen, and R. L. Williams. Pharm. Res. 13:453–456 (1996).

    Google Scholar 

  56. R. G. Buice, V. S. Subramanian, K. L. Duchin, and S. Uko-Nne. Pharm. Res. 13: 1109–1115 (1996).

    Google Scholar 

  57. H. S. Pentikis, J. D. Henderson, N. L. Tran, and T. M. Ludden. Pharm. Res. 13: 1116–1121 (1996).

    Google Scholar 

  58. R. Schall and R. Williams. J. Pharmacokin. Biopharm. 24:133–149 (1996).

    Google Scholar 

  59. L. Z. Benet and J. E. Goyan. Pharmacotherapy 15:433–440 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordenti, J., Cavagnaro, J.A. & Green, J.D. Design of Biological Equivalence Programs for Therapeutic Biotechnology Products in Clinical Development: A Perspective. Pharm Res 13, 1427–1437 (1996). https://doi.org/10.1023/A:1016002823485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016002823485

Navigation