Skip to main content
Log in

Cultured Buccal Epithelium: An In Vitro Model Derived from the Hamster Pouch for Studying Drug Transport and Metabolism

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Hamster pouch buccal epithelium (HPBE) was isolated and grown in primary cultures on rat-tail collagen-coated growth surfaces. The cultured pouch buccal epithelium (CPBE) was characterized morphologically with electron microscopy as stratified multilayers of epithelial cells with well-developed tonofibrillar–desmosomal complexes. Only the superficial layer of the cultured cells exhibited evidence of terminal differentiation. Alkaline phosphatase, alcohol dehydrogenase, and aminopeptidase activities in the primary cultured cells were determined by biochemical assays and found to be similar to those of homogenates of freshly excised hamster pouch epithelium. In addition, by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS PAGE), keratins and total proteins associated with the cultured cells were similar to those of freshly excised HPBE. The permeability characteristics of the cultured cells was determined by placing cultured cells grown on permeable polycarbonate disks in a Side-Bi-Side diffusion apparatus and quantitating the transcellular flux of tritium-labeled water, fluorescein, and fluorescein isothiocyanate dextrans (MW 3800 to 150,000). The cultured cells were least permeable on the third day of culture and were not permeable to substances with a MW greater than about 18,000. Our results indicate that primary cultures of hamster pouch epithelium exhibit biochemical properties similar to those of the excised hamster pouch epithelium from which they were derived. The morphological and permeability characteristics of cultured hamster epithelium were similar to those of nonkeratinized stratified oral epithelia typical of buccal mucosa in man, rabbit, and other species. CPBE, as described here, represents a potentially useful tool for in vitro drug transport, metabolism, pharmacology, and toxicology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. P. Asthana, B. G. Woodcock, M. Wenchel, K. H. Fromming, L. Schwabe, and N. Reitbrock. Arzneim-Forsch./Drug Res. 34(4):498–502 (1984).

    Google Scholar 

  2. W. Schurr, B. Knoll, R. Zeigler, R. Anders, and H. P. Merkle. J. Endocrinol. 8:41–44 (1985).

    Google Scholar 

  3. M. A. Hussain, B. J. Aungst, A. Kearney, and E. Shefter. Int. J. Pharm. 36:123–130 (1987).

    Google Scholar 

  4. S. J. Pimlott and M. Addy. Oral Surg. 59:144–148 (1985).

    Google Scholar 

  5. A. C. Moffat. Top. Med. Chem. 4:1–27 (1971).

    Google Scholar 

  6. C. A. Squier and N. W. Johnson. Br. Med. Bull. 31:169–175 (1975).

    Google Scholar 

  7. C. A. Squier and R. M. Hopps. Br. J. Dermatol. 95:123–129 (1976).

    Google Scholar 

  8. D. Adams. Arch. Oral Biol. 19:865–873 (1974).

    Google Scholar 

  9. K. Tolo and J. Jonsen. Arch. Oral Biol. 20:419–422 (1975).

    Google Scholar 

  10. G. D. McCoy, P. C. Tambone, and E. L. Wynder. Prog. Exp. Tumor Res. 24:28–36 (1979).

    Google Scholar 

  11. F. H. White and K. Gohari. Arch. Oral Biol. 26:563–576 (1981).

    Google Scholar 

  12. K. N. Garren and A. J. Repta. Int. J. Pharm. 48:189–194 (1988).

    Google Scholar 

  13. D. McCoy. Proc. Soc. Exp. Biol. Med. 156:118–122 (1977).

    Google Scholar 

  14. K. K. Sanford, W. R. Earl, V. J. Evans, H. K. Waltz, and J. E. Shannon. J. Natl. Cancer Inst. 11:773 (1951).

    Google Scholar 

  15. K. L. Audus and R. T. Borchardt. Pharm. Res 3:81–87 (1986).

    Google Scholar 

  16. T. Koivula, M. Koivusalo, and K. O. Lindros. Biochem. Pharmacol. 24:1807–1811 (1975).

    Google Scholar 

  17. L. J. Greenberg. Biochem. Biophys. Res. Commun. 9:430–435 (1962).

    Google Scholar 

  18. R. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  19. H. Winter, J. Schweizer, and K. Goerttler. Carcinogenesis 1:391–398 (1980).

    CAS  PubMed  Google Scholar 

  20. R. Regnier, J. Schweizer, S. Michel, C. Bailly, and M. Prunieras. Exp. Cell Res. 165:63–72 (1986).

    Google Scholar 

  21. U. K. Laemmli. Nature 227:680–685 (1970).

    PubMed  Google Scholar 

  22. T. T. Sun and H. Green. J. Biol. Chem. 253:2053–2060 (1978).

    Google Scholar 

  23. A. M. Pitt, J. E. Gabriels, F. Badmington, J. McDowell, L. Gonzales, and M. E. Waugh. BioTechniques 15:162–171 (1987).

    Google Scholar 

  24. P. J. Polverini and D. B. Solt. Lab. Invest. 4:432–441 (1986).

    Google Scholar 

  25. W. G. Nelson and T. T. Sun. J. Biol. Chem. 97:244–251 (1983).

    Google Scholar 

  26. C. A. Squier and B. K. Hall. J. Invest. Dermatol. 84:176–179 (1985).

    Google Scholar 

  27. M. W. Hill, C. A. Squier, and J. E. Linder. Histochem. J. 14:641–648 (1982).

    Google Scholar 

  28. C. A. Squier. J. Ultrastruct. Res. 43:160–177 (1973).

    Google Scholar 

  29. D. Rubin and I. S. Levij. Path. Microbiol. 43:26–30 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli-Saberi, M.R., Audus, K.L. Cultured Buccal Epithelium: An In Vitro Model Derived from the Hamster Pouch for Studying Drug Transport and Metabolism. Pharm Res 6, 160–166 (1989). https://doi.org/10.1023/A:1015988727757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015988727757

Navigation