Skip to main content
Log in

Saturable Process Involved in Active Efflux of Vincristine as a Mechanism of Multidrug Resistance in P388 Leukemia Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Kinetic analysis of vincristine (VCR) efflux in multidrug-resistant and parental P388 leukemia cells was performed to investigate the difference in activity between the two cell lines. Efflux velocities of VCR were directly determined from the slope of the initial release of drug induced by resuspending the preloaded cells in VCR-free medium, representing unidirectional efflux from intracellular free or loosely bound drug pools. Further, the equilibrium binding of VCR to whole-cell homogenates was analyzed by ultrafiltration to estimate intracellular unbound drug concentrations. A two-site binding model was found to fit the data best for both cell lines, and depletion of ATP by the addition of apyrase decreased binding. The binding parameters were similar between the two cell lines. A Hofstee plot of efflux demonstrated the existence of both linear and saturable transport of VCR in both cell lines. The greater maximum velocity observed with VCR efflux in the resistant cells suggests that an increased number of transporters causes greater activity of this process in the resistant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Bertino. Med. Pediat. Oncol. 5:105–114 (1978).

    Google Scholar 

  2. G. A. Curt, N. J. Clendenin, and B. A. Chabner. Cancer Treat. Rep. 68:87–99 (1984).

    Google Scholar 

  3. V. Ling, J. Gerlach, and N. Kartner. Breast Cancer Res. Treat. 4:89–99 (1984).

    Google Scholar 

  4. S. Kaye and S. Merry. Cancer Chemother. Pharmacol. 14:96–103 (1985).

    Google Scholar 

  5. R. K. Johnson, M. P. Chitnis, W. M. Embrey, and E. B. Gregory. Cancer Treat. Rep. 62:1535–1547 (1978).

    Google Scholar 

  6. K. Danø. Biochim. Biophys. Acta 323:1466–1483 (1973).

    Google Scholar 

  7. V. Ling and L. H. Thompson. J. Cell. Physiol. 83:103–116 (1973).

    Google Scholar 

  8. T. Skovsgaard. Cancer Res. 38:4722–4727 (1978).

    Google Scholar 

  9. M. Inaba, H. Kobayashi, Y. Sakurai, and R. K. Johnson. Cancer Res. 39:2200–2203 (1979).

    Google Scholar 

  10. M. Inaba and Y. Sakurai. Cancer Lett. 8:111–115 (1979).

    Google Scholar 

  11. W. T. Beck, M. C. Cirtain, and J. L. Lefko. Mol. Pharmacol. 24:485–492 (1983).

    Google Scholar 

  12. A. Fojo, M. Cornwell, C. Cardarelli, D. P. Clark, N. Richert, D.-W. Shen, K. Ueda, M. Willingham, M. M. Gottesman, and I. Pastan. Breast Cancer Res. Treat. 9:5–16 (1987).

    Google Scholar 

  13. P. Gros, Y. B. Neriah, J. M. Croop, and D. E. Housman. Nature (London) 323:728–731 (1986).

    Google Scholar 

  14. D.-W. Shen, A. Fojo, I. B. Roninson, J. E. Chin, R. Soffir, I. Pastan, and M. Gottesman. Mol. Cell. Biol. 6:4039–4055 (1986).

    Google Scholar 

  15. M. M. Cornwell, A. R. Safa, R. L. Felsted, M. M. Gottesman, and I. Pastan. Proc. Natl. Acad. Sci. USA 83:3847–3850 (1986).

    Google Scholar 

  16. A. R. Safa, C. J. Glover, M. B. Meyers, J. L. Biedler, and R. L. Felsted. J. Biol. Chem. 261:6137–6140 (1986).

    Google Scholar 

  17. C. Chen, J. E. Chin, K. Ueda, P. P. Clark, I. Pastan, M. M. Gottesman, and I. B. Roninson. Cell 47:381–389 (1986).

    Google Scholar 

  18. P. Gros, J. Croop, and D. Housman, Cell 47:371–380 (1986).

    Google Scholar 

  19. J. H. Gerlach, J. A. Endicott, P. F. Juranka, G. Henderson, F. Sarani, K. L. Deuchas, and V. Ling. Nature (London) 323:728–731 (1986).

    Google Scholar 

  20. M. Inaba, T. Watanabe, and Y. Sugiyama. Jpn. J. Cancer Res. (Gann) 78:397–404 (1987).

    Google Scholar 

  21. B. J. Houghton, P. J. Houghton, B. J. Hazelton, and E. C. Douglass. Cancer Res. 45:2706–2712 (1985).

    Google Scholar 

  22. K. Wierzba, Y. Sugiyama, T. Iga, and M. Hanano. J. Pharm. Dyn. 11:651–661 (1988).

    Google Scholar 

  23. P. E. Stanley and S. G. Williams. Anal. Biochem. 29:381–392 (1969).

    Google Scholar 

  24. K. Yamaoka, T. Nakagawa, and T. Uno. J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Google Scholar 

  25. J. A. Houghton, L. G. Williams, R. K. Dodge, S. L. George, B. J. Hazelton, and P. J. Houghton. Biochem. Pharmacol. 36:81–88 (1987).

    Google Scholar 

  26. R. J. Owellen, A. H. Owens, Jr., and D. W. Donigian. Biochem. Biophys. Res. Commun. 47:685–691 (1972).

    Google Scholar 

  27. A. R. Safa, C. J. Glover, and R. L. Felsted. Cancer Res. 47:5149–5154 (1987).

    Google Scholar 

  28. M. Inaba, K. Nagashima, Y. Sakurai, M. Fukui, and Y. Yanagi. Gann 75:1049–1052 (1984).

    Google Scholar 

  29. M. Inaba and K. Nagashima. Jpn. J. Cancer Res. (Gann) 77:197–204 (1986).

    Google Scholar 

  30. M. Naito, H. Hamada, and T. Tsuruo. J. Biol. Chem. 263:11887–11891 (1988).

    Google Scholar 

  31. T. Tsuruo, H. Iida-Saito, H. Kawabata, T. Oh-hara, H. Hamada, and T. Utakoji. Jpn. J. Cancer Res. (Gann) 77:682–692 (1986).

    Google Scholar 

  32. D. D. Ross, J. V. Ordonez, C. C. Joneckis, J. R. Testa, and B. W. Thompson. Cytometry 9:359–367 (1988).

    Google Scholar 

  33. L. C. Bowman, J. A. Houghton, and P. J. Houghton. Biochem. Pharmacol. 37:1251–1257 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Inaba, M. & Sugiyama, Y. Saturable Process Involved in Active Efflux of Vincristine as a Mechanism of Multidrug Resistance in P388 Leukemia Cells. Pharm Res 6, 690–696 (1989). https://doi.org/10.1023/A:1015986405834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015986405834

Navigation