Skip to main content
Log in

Quantum Cosmological Perfect Fluid Models

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Perfect fluid Friedmann-Robertson-Walker quantum cosmological models for an arbitrary barotropic equation of state p = αρ are constructed using Schutz's variational formalism. In this approach the notion of time can be recovered. By superposition of stationary states, finite-norm wave-packet solutions to the Wheeler-DeWitt equation are found. The behaviour of the scale factor is studied by applying the many-worlds and the ontological interpretations of quantum mechanics. Singularity-free models are obtained for α < 1. Accelerated expansion at present requires −1/3 > α > − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Halliwell, J. A. (1991). In: Quantum cosmology and baby universes, ed. Coleman, S., Hartle, J. B., Piran, T., and Weinberg, S. World Scientific, Singapore.

    Google Scholar 

  2. Arnowitt, R., Deser, S., and Misner, C. W. (1962). Gravitation: An Introduction to Current Research, ed. Witten, L., Wiley, New York.

    Google Scholar 

  3. Isham, C. J. Canonical quantum gravity and the problem of time, gr-qc/9210011.

  4. Tipler, F. J. (1986). Phys. Rep. 137, 231.

    Google Scholar 

  5. Holland, P. R. (1993). The Quantum Theory of Motion: An Account of the de Broglie-Bohm Interpretation of Quantum Mechanics, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Pinto-Neto, N. (1999). Proceedings of the VIII Brazilian School of Cosmology and Gravitation II, ed. Novello M.

  7. Kiefer, C. (1988). Phys. Rev. D 38, 1761.

    Google Scholar 

  8. Schutz, B. F. (1970). Phys. Rev. D 2, 2762.

    Google Scholar 

  9. Schutz, B. F. (1971). Phys. Rev. D 4, 3559.

    Google Scholar 

  10. Gotay, M. J., and Demaret, J. (1983). Phys. Rev. D 28, 2402.

    Google Scholar 

  11. Lapchinskii, V. G., and Rubakov, V. A. (1977). Theor. Math. Phys. 33, 1076.

    Google Scholar 

  12. Alvarenga, F. G., and Lemos, N. A. (1998). Gen. Rel. Grav. 30, 681.

    Google Scholar 

  13. Acacio de Barros, J., Pinto-Neto, N., and Sagioro-Leal, M. A. (1998). Phys. Lett. A 241, 229.

    Google Scholar 

  14. Lemos, N. A. (1996). J. Math. Phys. 37, 1449.

    Google Scholar 

  15. Assad, M. J., and Lima, J. A. S. (1988). Gen. Rel. Grav. 20, 527.

    Google Scholar 

  16. Gradshteyn, I. S., and Ryzhik, I. M. Table of Integrals, Series and Products (Academic, New York, 1980), formula 6.631-4.

    Google Scholar 

  17. Perlmutter, S. et al. (1999). Astrophys. J. 517, 565.

    Google Scholar 

  18. Riess, A. G. et al. (1998). Astron. J. 116, 1009.

    Google Scholar 

  19. Neumaier, A., Bohmian mechanics contradicts quantum mechanics, quant-ph/0001011.

  20. Marchildon, L., No contradictions between Bohmian and quantum mechanics, quant-ph/0007068.

  21. Ghose, P., On the incompatibility of quantum mechanics and the de Broglie-Bohm theory II, quant-ph/0103126.

  22. Hawking, S. W., and Page, D. B. (1990). Phys. Rev. D 42, 2655.

    Google Scholar 

  23. Bateman Manuscript Project. Higher Transcendental Functions, Vol. I, Chapter VI, A. Erdélyi (ed.), McGraw-Hill, New York (1953).

    Google Scholar 

  24. Zeh, H. D. (1999). Found. Phys. Lett. 12, 197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarenga, F.G., Fabris, J.C., Lemos, N.A. et al. Quantum Cosmological Perfect Fluid Models. General Relativity and Gravitation 34, 651–663 (2002). https://doi.org/10.1023/A:1015986011295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015986011295

Navigation